Introduction to Nuclear Chemistry and Fuel Cycle Separations

Nuclear Fuel Cycle Fundamentals
Frank L. Parker
Department of Civil and Environmental Engineering
Vanderbilt University School of Engineering

Nashville, Tennessee
December 16-18, 2008
Nuclear Fuel Cycle Fundamentals

a. The Nuclear Fuel Cycle (milling, additional refinement including conversion, enrichment, reprocessing, waste management, and waste disposal),
b. Fission yields,
c. Actinide elements,
d. Important fission products,
e. Problems created during Cold War
 i. Waste tanks,
 ii. Site Contamination-radioactive and non-radioactive,
 iii. Stewardship of abandoned sites.

ALL SITES AND OPERATION ARE DIFFERENT. THEREFORE, NUMBERS GIVEN ARE ONLY REPRESENTATIVE

Utilize Lessons Learned from the Past as You Move Forward
Nuclear Fuel Cycle Fundamentals
Major Waste Producers in the Fuel Cycle

- Spent Fuel
- Depleted Uranium
- Mill Tailings
- Over-Burden & Waste
- High Level Waste
CRUDE SEPARATION OF PU AND U

VERY GOOD SEPARATION OF PU AND U.

LIQUID HIGH LEVEL RADIOACTIVE WASTE. LOW LEVEL RADIOACTIVE WASTE. TRANSPORTATION OF SPENT FUEL

PURIFIED PLUTONIUM

DEPLETED URANIUM

<table>
<thead>
<tr>
<th>Practice</th>
<th>Monitored Workers, Thousands</th>
<th>Average Annual Dose, mSv</th>
<th>Monitored Workers</th>
<th>Measurably Exposed Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>69</td>
<td>4.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Milling</td>
<td>6</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrichment</td>
<td>13</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Fabrication</td>
<td>21</td>
<td>1.03</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Reactor Operation</td>
<td>530</td>
<td>1.4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Reprocessing</td>
<td>45</td>
<td>1.5</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>130</td>
<td>0.78</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
<td>1.75</td>
<td>3.1</td>
<td></td>
</tr>
</tbody>
</table>
Overview of Representative Ecological Risk Assessments Conducted for Sites with Enhanced Radioactivity, November 2007-Conclusions

• For the **aquatic environment**, the non-human biota that are most likely to receive the **highest doses** appear to be **crustaceans, mollusks** and wildlife (**birds and mammals**) relying on the aquatic environment.

• For the **terrestrial environment**, the species that are expected to receive the **highest doses** generally appear to be **vegetation, invertebrates and small mammals**.

• For **normal operations at nuclear fuel cycle sites**, the **potential for effects** in nonhuman biota is **low** and well below reference dose rates at which adverse health effects to populations of nonhuman biota might be anticipated. This holds **true for normal operation and accidents at sites of the early development of weapons and civilian nuclear fuel cycles**.

• Populations of **biota** exposed to **very high levels of radiation**, arising from major accidents, such as **Chernobyl**, seem likely to **recover within a short period** once the **source of exposure** is significantly reduced or removed.

Not Just a Technical Problem
America's Energy Future: Technology Opportunities, Risks, and Tradeoffs NAS 2007-

- This study will critically evaluate the current and projected state of development of energy supply, storage, and end use technologies. The study will not make policy recommendations, but it will analyze where appropriate the role of public policy in determining the demand and cost for energy and the configuration of the nation’s energy systems
- Estimated times to readiness for deployment
- Current and projected costs (e.g., per unit of energy production or savings)
- Current and projected performance (e.g., efficiency, emissions per unit of output)
- Key technical, environmental, economic, policy, and social factors that would enhance or impede development and deployment
- Key environmental (including CO2 mitigation), economic, energy security, social, and other life-cycle impacts arising from deployment
- Key research and development (R&D) challenges

Global Economic Conditions and Demand for Energy- Non-Proliferation and Terrorist Concerns-Geopolitical Concerns, Etc. Will Not Discuss Those Topics But They Will Influence The Technology Decisions More Than What We Shall Discuss.
Managing spent fuel in the United States: The illogic of reprocessing
[report on www.fissilematerials.org]
Frank von Hippel, Princeton University

La Hague reprocessing plant cost $20 Billion to build, $1 Billion/yr to operate vs. $0.4 Billion/yr total cost for spent fuel storage
“Some elements of GNEP could make important contributions to reducing proliferation risks. Unfortunately, GNEP’s heavy focus on building a commercial-scale reprocessing plant in the near term would, if accepted, increase proliferation risks rather than decreasing them.”

Gregory Jaczko, NRC Commissioner, March 10, 2008, $500 Billion federal loan guarantee needed for a nuclear renaissance.
• Our margin of safety is shrinking, not growing.
• The Commission believes that unless the world community acts decisively and with great urgency, it is more likely than not that a weapon of mass destruction will be used in a terrorist attack somewhere in the world by the end of 2013.
• the nuclear aspirations of Iran and North Korea pose immediate and urgent threats to the Nuclear Nonproliferation Treaty.

• ADDED
• France has offered reactors to Georgia, Libya, the UAE, Saudi Arabia, Egypt, Morocco and Algeria.
• Pakistan has sold nuclear weapons technology to other countries and has a nuclear arsenal.
Anita Nilsson, Director IAEA’s Nuclear Security Program

“I believe that a new nuclear energy program will have difficulty getting started if it is not perceived by the public to be both safe and secure. I will be very surprised if a new reactor will be built anywhere without the public getting good answers about its protection against terrorists or criminals or both.”
“A regional war involving 100 Hiroshima-sized weapons would pose a worldwide threat due to ozone destruction and climate change. A superpower confrontation with a few thousand weapons would be catastrophic.”
Environmental Consequences of Nuclear War

Change in global average temperature (blue) and precipitation (red)
Indo-Pakistan war and Strategic Offensive Reduction Treaty (SORT) war
(US and Russia 1700-2200 deployed warheads)
Stove Piped-Each With Their Own Agenda
No Global Solution Possible
Typical Requirements for the Operation of a 1000 MWe Nuclear Power Reactor
(http://www.world-nuclear.org/info/inf03.html)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>20 000 tonnes of 1% uranium ore</td>
</tr>
<tr>
<td>Milling</td>
<td>230 tonnes of uranium oxide concentrate (with 195 t U)</td>
</tr>
<tr>
<td>Conversion</td>
<td>288 tonnes UF$_6$ (with 195 t U)</td>
</tr>
<tr>
<td>Enrichment</td>
<td>35 tonnes UF$_6$ (with 24 t enriched U) - balance is 'tails'</td>
</tr>
<tr>
<td>Fuel fabrication</td>
<td>27 tonnes UO$_2$ (with 24 t enriched U)</td>
</tr>
<tr>
<td>Reactor operation</td>
<td>8640 million kWh (8.64 TWh) of electricity at full output</td>
</tr>
<tr>
<td>Used fuel</td>
<td>27 tonnes containing 240kg plutonium, 23 t uranium (0.8% U-235), 720kg fission products, also transuranics.</td>
</tr>
</tbody>
</table>

Concentrate is 85% U, enrichment to 4% U-235 with 0.25% tails assay - hence 140,000 SWU required, core load 72 tU, refuelling so that 24 tU/yr is replaced. Operation: 45,000 MWday/t (45 GWd/t) burn-up, 33% thermal efficiency. (In fact a 1000 MWe reactor cannot be expected to run at 100% load factor - 90% is more typical best, so say 7.75 TWh/yr, but this simply means scaling back the inputs accordingly.)
Radioactivity of Fission Products and Actinides in High-Level Wastes Produced in 1 Year of Operation of a Uranium-Fueled 1000 Mwe PWR
Benedict, Manson et al, Nuclear Chemical Engineering, 1981
MINING-SURFACE, SUB-SURFACE AND IN-SITU LEACHING
Constant 2007 US$ vs. Current US$ Spot U3O8 Prices

http://www.uxc.com/review/uxc_g_hist-price.html

http://www.cameco.com/investor_relations/ux_history/historical_ux.php
USA Uranium Recovery Licensing Activities
Larry W. Camper, NMA/NRC April 29, 2008

http://adamswebsearch2.nrc.gov/idmws/doccontent.dll?library=PU_ADAMS^PBN_TAD01&ID=081440220

<table>
<thead>
<tr>
<th>Facility</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>New ISL Facility</td>
<td>14</td>
</tr>
<tr>
<td>New Conventional Mill</td>
<td>7</td>
</tr>
<tr>
<td>Combined ISL-Conv.</td>
<td>1</td>
</tr>
<tr>
<td>ISL Expansion</td>
<td>7</td>
</tr>
<tr>
<td>ISL Restart</td>
<td>1</td>
</tr>
<tr>
<td>Conventional Restart</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>31</td>
</tr>
</tbody>
</table>

Higher Potential for Ground Water Contamination
Uranium Mining Methods Worldwide

http://www.world-nuclear.org/info/inf23.html?terms=uranium+mining+usa

<table>
<thead>
<tr>
<th>Uranium Mining Method</th>
<th>2007 Production Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Underground and Open Pit</td>
<td>62</td>
</tr>
<tr>
<td>In-Situ Leaching</td>
<td>29</td>
</tr>
<tr>
<td>By-product</td>
<td>10</td>
</tr>
</tbody>
</table>
Waste Uranium Rock “Pyramids” Ronneburg, Germany

http://www.wise-uranium.org/uwai.html#UMIN
Idealized Version of In Situ Leaching

Simplified version of how ISL solution mining works. Lixiviant is injected into the ground through a well on the left and far right. The fluid flows underground dissolving Uranium and carrying it in solution until it reaches a production well in the center. The fluid carrying dissolved uranium is returned to the surface from the production well, then is piped to a production facility for refinement into yellowcake.

Assumes complete capture of lixiviant with no ground water contamination
1. Actual Exposure of People

Many mines are on federal lands. Therefore, mostly recreational use except for Native Americans who live and may work around the site. Not all reclaimed nor if nearby buildings are contaminated.

2. Actual Effect on Groundwater and Its Use

Drinking water wells withdraw from deep aquifers. May not be contaminated. Mines are in mineralized areas. Difficult to differentiate between mine effluent and naturally occurring uranium.

3. Concentration of Contaminants

Ra-226, U and As may be problems but can only be determined on a site specific basis.
Overview of Representative Ecological Risk Assessments Conducted for Sites with Enhanced Radioactivity, November 2007-Uranium Mining

McArthur River, Canada

- Almost all of the predicted increases in the body burden or dose in receptors are related to the release of treated mine water. Few to no effects are predicted to result from air.

- The only valued ecological component predicted to exceed the benchmark radiological dose was the scaup duck primarily due to ingestion of Po-210. The risk is limited to the area near the discharge point and should return to background after the end of operations.

- The dose to benthic invertebrates (chironomid) exceeds the reference dose of 10 mGy/d only when a radiation weighting factor of 40 is assumed for alpha radiation. For the more realistic factor of 10, the reference dose is not exceeded.

URANIUM MILLING AND TAILINGS

Only 1 mill, White Mesa, operating in USA but Shootaring Mill is changing its license to operational status.

<table>
<thead>
<tr>
<th>Doses as a Result of Milling Operations, UNSCEAR 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milling</td>
</tr>
<tr>
<td>Monitored Workers, thousands</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Summary-Mill Tailings Sites

All U.S. sites are closed except for Grand Junction, that is only receiving residues, and the Moab site tailings that are being removed from the Colorado River bank.

Costs of closure greatly underestimated; $1.5 billion USD spent to date

Cover designs need to accommodate environmental change and natural processes
Atlas Mines Tailing Pile near Colorado River, Moab, Utah
URANIUM MILL TAILINGS DISPOSAL
SHEEP GRAZING ON RIFLE MILL TAILINGS SITE
Uranium Mill Tailings Activity

ore grade 0.1% U; extraction 90% (stacked diagram)
From a Study of Colorado Populations Near Uranium Mining/Milling Operations

No statistically significant increases for any cause of death except Lung Cancers in males (associated with historical occupational exposures); no increase in females

No evidence that residents experienced increased risk of death due to environmental exposures from uranium mining and milling
Depleted Uranium Fluoride in Cylinders

http://web.ead.anl.gov/uranium/mgmtuses/storage/index.cfm

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Cylinders</th>
<th>Total Depleted UF₆ Metric tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paducah, KY</td>
<td>36,191</td>
<td>436,400</td>
</tr>
<tr>
<td>Portsmouth, Ohio</td>
<td>16,109</td>
<td>195,800</td>
</tr>
<tr>
<td>Oak Ridge, TH</td>
<td>4,822</td>
<td>54,300</td>
</tr>
<tr>
<td>Total</td>
<td>57,122</td>
<td>685,500</td>
</tr>
</tbody>
</table>

When UF₆ is released to the atmosphere, it reacts with the moisture in the air to produce UF that is highly toxic.
Depleted Uranium Hexafluoride Conversion to UO_2
Portsmouth, Paducah and Oak Ridge Gaseous Diffusion Enrichment Plants
http://www.uds-llc.com/duf_conversion.htm

$$\text{UF}_6 + 2 \text{H}_2\text{O} \rightarrow \text{UO}_2\text{F}_2 + 4\text{HF}$$

Full Operations scheduled 2010-11

$$\text{UO}_2\text{F}_2 + \text{H}_2 + \text{H}_2\text{O} \rightarrow \text{UO}_x + \text{HF}$$

700,000 metric tons of DUF6
Enrichment

<table>
<thead>
<tr>
<th></th>
<th>SILEX</th>
<th>CENTRIFUGE</th>
<th>GAS DIFFUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVELOPED</td>
<td>2000’s</td>
<td>1940’s</td>
<td>1940’s</td>
</tr>
<tr>
<td>ENRICHMENT EFFICIENCY</td>
<td>2 to 0(1)</td>
<td>1.3</td>
<td>1.004</td>
</tr>
<tr>
<td>COST COMPARISON</td>
<td>Potentially Attractive</td>
<td>Capital Intensive</td>
<td>Very expensive</td>
</tr>
<tr>
<td>% OF EXISTING MARKET(2)</td>
<td>0%</td>
<td>54%</td>
<td>33%</td>
</tr>
<tr>
<td>STATUS</td>
<td>STATUS Under Development 3rd Generation</td>
<td>Proven 2nd Generation</td>
<td>Obsolescent 1st Generation</td>
</tr>
</tbody>
</table>

(1) This number is Business Classified - the range indicated is dictated by the technology Classification Guide
(2) Approximately 13% supplied via Russian HEU material
NUCLEAR POWER PLANTS
GENERATION OF REACTORS
GENERATIONS OF REACTORS

GEN I Only six still in operation. Less than 250 MWe* and all in UK

GEN II (1960s-1970s) Most commercial power reactors in operation today are light water reactors (LWR), Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR). There are a small number of Heavy Water Reactors (HWR) all derived from Canadian models (CANDU) and Russian graphite reactors (RBMK) (Реактор Большой Мощности Канальный)

GEN III (1990s) Mostly in France and Japan. Standardized & improved GEN II

GEN III+ Is being used in the current expansion of nuclear power

GEN IV Future reactors-now limited to the 6 most likely

*Megawatts electricity
Overview of Representative Ecological Risk Assessments Conducted for Sites with Enhanced Radioactivity, November 2007-Nuclear Power Plants

Loire River, France

- 14 nuclear power plants on the River releasing (only β and γ emitting isotopes) 54Mn, 58Co, 60Co, 110mAg, 63Ni, 123mTe, 124Sb, 125Sb, 131I, 134Cs, 137Cs, 3H and 14C. Only 5, 3H, 14C, 131I and 134, 137 Cs were important in the assessment of chronic exposure.

- The estimated dose rates to freshwater organisms in the Loire River and its estuary are at least 5 orders of magnitude lower than those at which effects have been reported. The main contribution to the estimated dose rate is internal cesium exposure.

“…all committee members agree that the GNEP (Global Nuclear Energy Partnership) program **should not go forward** and that it should be replaced by a less aggressive research program.”
The Future of Nuclear Power, MIT, 2003
(http://web.mit.edu/nuclearpower)

- The prospects for nuclear energy as an option “are limited by four unresolved problems: high relative costs; perceived adverse safety, environmental, and health effects; potential security risks stemming from proliferation; and unresolved challenges in long-term management of nuclear wastes.”

- Place “increased emphasis on the once-through fuel cycle as best meeting the criteria of low costs and proliferation resistance”;

- DOE should “..perform the analysis necessary to evaluate alternative reactor concepts and fuel cycles using the criteria of cost, safety, waste, and proliferation resistance. Expensive development projects should be delayed pending the outcome of this multi-year effort.” (emphasis added)
REPROCESSING
UREX +1A PROCESS
Spent Nuclear Reactor Fuel Reprocessing-Where Have We Been and Where Are We Going? Raymond G. Wymer, Vanderbilt University, January 29, 2007

Note complexity of the system
La Hague, France

The predicted dose rates to marine biota attributable to radioactive discharges to the sea from the La Hague facility are small, well below comparison guidance levels at which deleterious and observable health effects to populations of marine biota might be expected and well below dose rates from background radioactivity in the region.
RADIOACTIVE WASTE
U.S. RADIOACTIVE WASTES

<table>
<thead>
<tr>
<th>WASTE CATEGORY</th>
<th>MASS (MTHM)</th>
<th>VOLUME (m³)</th>
<th>RADIOACTIVITY 10^{16} Bq</th>
<th>10^6 Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPENT NUCLEAR FUEL</td>
<td>34,253</td>
<td>13,808</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>HIGH LEVEL WASTE</td>
<td></td>
<td>347,350</td>
<td>3337</td>
<td>902</td>
</tr>
<tr>
<td>TRU (DOE)</td>
<td></td>
<td>238,015</td>
<td>9.6</td>
<td>2.6</td>
</tr>
<tr>
<td>LOW LEVEL WASTES</td>
<td></td>
<td>320,764</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>URANIUM MILL TAILINGS</td>
<td></td>
<td>146,700,000</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>MIXED LOW LEVEL WASTES</td>
<td></td>
<td>147,254</td>
<td>N.A.</td>
<td></td>
</tr>
</tbody>
</table>

MTHM = METRIC TONS HEAVY METALS
N.A. = NOT AVAILABLE

DOE "INTEGRATED DATA BASE REPORT-1966: US NUCLEAR SPENT FUEL AND RADIOACTIVE WASTE INVENTORIESK PROJECTIONS, ND CHARACTERISTICS" DECEMBER 1997
US CONTAMINATED ENVIRONMENTAL MEDIA*

SOLIDS \[79 \times 10^6 \text{ m}^3\]

SOILS \[75 \times 10^6 \text{ m}^3\]

WATER \[1,800 \times 10^6 \text{ m}^3\]

(GREATER THAN 99 % IS GROUNDWATER)

REMEDIAION COSTS**

$147.3 \text{ BILLION (CONSTANT 1998 DOLLARS)}$

($57 \text{ B 1997-2006; } 90.3 B 2007-2070)

*LINKING LEGACIES: CONNECTING THE COLD WAR NUCLEAR WEAPONS PRODUCTION PROCESSES TO THEIR ENVIRONMENTAL CONSEQUENCES; DOE JANUARY 1997 DOE/EM-0319

**ACCELERATING CLEANUP: PATHS TO CLOSURE; DOE JUNE 1998 DOE/EM-0362
LOW LEVEL WASTE DISPOSAL FACILITIES
Atlantic Compact, Barnwell, as of July 1, 2008, no longer accepts out of Compact waste.
Boxes containing low-level radioactive waste lie in a shallow land burial trench at the Savannah River Site. Alternative methods for the disposal of low-level waste are being developed by the Department. *Savannah River Site, South Carolina. January 7, 1994.*
EVAPOTRANSPIRATION COVER

RCRA Type C Landfill Covers and Liners
OAK RIDGE HDPE RCRA CAP
For radioactive waste management and disposal sites, although higher dose rates can be sometimes found in the immediate proximity of radioactive wastes within the site boundaries, further away from the source of radioactivity or beyond the site boundaries, dose rates are below the reference dose rates.

HIGH LEVEL WASTE TANK STORAGE
Cooling Coils in SRS Tank
Tank Waste Retrieval, Processing, and on-Site Disposal at Three Department of Energy Sites, National Research Council, 2006
Salt Waste in Tank Annulus at SRS

Tank Waste Retrieval, Processing, and on-Site Disposal at Three Department of Energy Sites, National Research Council, 2006

Tank 14

- Inside of 5-foot containment pan
- Ventilation duct

Tank 15

- 15" long crack
- Outside of primary tank wall
- Salt waste that leaked from tank and is contained in annulus pan
SRS WASTE TANK SLUDGE
Tank Waste Retrieval, Processing, and on-Site Disposal at Three Department of Energy Sites, National Research Council, 2006
STATISTICS OF CLEANUP OF TANK SITES

<table>
<thead>
<tr>
<th>Reprocessing Methods</th>
<th>Hanford</th>
<th>Savannah River</th>
<th>Idaho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Tanks (Total)</td>
<td>177</td>
<td>51</td>
<td>7 Bin Sets</td>
</tr>
<tr>
<td>Single Shell</td>
<td>149</td>
<td>8 (Type IV)</td>
<td></td>
</tr>
<tr>
<td>Double Shell</td>
<td>28</td>
<td>43 (Types I-III)</td>
<td></td>
</tr>
<tr>
<td>Number of Tanks Closed</td>
<td></td>
<td>2 (~1% OF Total)</td>
<td></td>
</tr>
</tbody>
</table>
• Began radioactive operations in March 1996
• 2,430 canisters filled at beginning of 2008
• Projected to produce more than 5,000 canisters by 2019 containing 417 million curies
WIPP (WASTE ISOLATION PILOT PLANT) TRANSURANIC WASTE DISPOSAL
Total Shipments to WIPP

- **Contact-handled Transuranic Waste Volumes**
 - 57,790 cubic meters

- **Remote-handled transuranic waste volumes**
 - 83 cubic meters
PROPOSED HIGH LEVEL WASTE DISPOSAL FACILITY-YUCCA MOUNTAIN
Site Characterization

- 1987 – 1997: Characterization of Yucca Mountain site
- 1997: Excavation of 5-mile Exploratory Studies (ESF) tunnel completed
- 2008: License Application Submitted to USNRC
THE FUTURE OF NUCLEAR POWER, MIT 2003
Total Estimated Cost of Project

DOE’s best current estimate to complete Yucca Mountain with a 2017 opening date is about $23 billion (FY 2006 dollars)

Historical cost, FY 1983-2005: $12.1 billion (in FY 2006 dollars)

DOE plans to release updated estimates in 2007
 • Cash flow analysis expected mid-to-late November 2006
 • Integrated project plan expected early 2007
 • Life-cycle cost analysis expected early to mid-2007

Source: GAO analysis of data and estimates provided by DOE
RELATIVE COST-BACK END OF FUEL CYCLE

Some idea of the scale of part of the back end of the fuel cycle can be understood from these costs:

• Manhattan Project to the present, 300 billion dollars on nuclear weapons research, production, and testing (in 1995 dollars)

• Cost to research, construct and operate Yucca Mountain: 2007 total system life cycle cost estimate, $96 Billion from the beginning of the program in 1983 through closure and decommissioning in 2133. $14 Billion to date, 14%. OCRWM established in 1982.

• Together with the approximately $300 Billion for cleanup = ~ $400 Billion

• Iraqi War direct US costs ~$600 Billion Dollars to date and estimates of total costs as high as $5 Trillion to 2017
 The Three Trillion Dollar War, Joseph E. Stiglitz and Linda J. Bilmes, 2008

• Bailout of the investment and banking institutions ~ 1 Trillion Dollars to date
Long Term Stewardship-In Perpetuity Limitations

• The Roman Republic lasted from 509-27 BC and the Roman Empire lasted from 27 BC-476 AD.

• The Persian Empire lasted from 559 BC-330 BC From Cyrus the Great until Alexander the Great

• Only the Catholic Church has a long operating history, approximately 2000 years.
 – There were periods of instability.

• We can see that depending upon present day institutions to provide caretaker services into the far distant future is not reasonable.
Perspectives on Perpetuity

• The decay of radioactive materials can be calculated till infinity.
 – The doses resulting from these concentrations ignore the reality of exogenous events.

• However you cannot predict with accuracy:
 – What happens during the next ice age or with global warming
 – advances in medicine to eliminate or reduce the effects of cancer
 – life style changes
 – new technology to immobilize radioactive materials
 – the importance of the few people affected by radioactive materials relative to much greater societal needs
 – the impact of nuclear wars or dirty bombs, etc.
BACKUP SLIDES
Six in-situ-leach plants operating
1 Alta Mesa Project
2 Crow Butte Operation
3 Kingsville Dome
4 Rosita
5 Smith Ranch-Highland Operation
6 Vasquez

Potential for Ground Water Contamination
Laser Enrichment

The Atomic Vapour Laser Isotope Separation (AVLIS) and the SILVA processes have been abandoned after $2 Billion USD spent on R&D. The SILEX process is the only laser process still under development. The details are business classified. However, it is known to be a molecular photo-dissociation of UF$_6$ to produce UF$_5$ that can be separated from the 238U in the UF$_6$. The process will be examined in a test loop test before proceeding to full scale production with commercial licensing underway. The two largest US nuclear utilities have already signed letters of intent to contract for uranium enrichment from the Global Laser Enrichment (GLE) consortium.
UF₆ Conversion to UO₂

The UF₆, in solid form in containers, is heated to gaseous form, and the UF₆ gas is chemically processed to form LEU uranium dioxide (UO₂) powder. The powder is then pressed into pellets, sintered into ceramic form, loaded into Zircaloy tubes, and constructed into fuel assemblies.
URANIUM MILLING AND TAILINGS

Only I mill, White Mesa, operating in USA but Shootaring Mill is changing its license to operational status. The mill uses sulphuric acid leaching and a solvent extraction recovery process to extract and recover uranium and vanadium. The mill is licensed to process an average of 2,000 tons per day of ore and produce 8.0 million pounds of U3O8 per year.

<table>
<thead>
<tr>
<th>Doses as a Result of Milling Operations, UNSCEAR 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milling</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Monitored Workers, thousands</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Mining Statistics

Estimated Overburden Produced by Open-Pit and Underground Mining

<table>
<thead>
<tr>
<th>Mining Method</th>
<th>Estimated Total Overburden Produced (MT), 1948-1996</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Estimate</td>
</tr>
<tr>
<td>Surface Mining</td>
<td>1,000,000,000</td>
</tr>
<tr>
<td>Underground Mining</td>
<td>5,000,000</td>
</tr>
</tbody>
</table>

Source: Otton 1998

Waste to Ore Ratios

<table>
<thead>
<tr>
<th>Mining Method</th>
<th>Low</th>
<th>High</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Mines</td>
<td></td>
<td>30:1 early 1980s; lower later</td>
<td></td>
</tr>
<tr>
<td>Underground Mines</td>
<td>1:1</td>
<td>20:1</td>
<td>(9:1 early) 1:1 (late 1970s)</td>
</tr>
<tr>
<td>In-Situ Leaching</td>
<td>Small amounts deposited on site</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technologically Enhanced Naturally Occurring Radioactive Materials From Uranium Mining Volume 1: Mining and Reclamation Background, [EPA 402-R-08-005] April 2008
Open Pit Mining

Ranger Open Pit Mine, Australia) http://www.wise-uranium.org/uwai.html#UMIN
Surface Mine Nevada

Technologically Enhanced Naturally Occurring Radioactive Materials
Uranium Mining Volume 1: Mining and Reclamation Background
http://www.epa.gov/rpdweb00/docs/tenorm/402-r-08-005-voli/402-r-08-005-v1-cov-exec-toc.pdf
Surface Mine

Technologically Enhanced Naturally Occurring Radioactive Materials
Uranium Mining Volume 1: Mining and Reclamation Background
http://www.epa.gov/rpdweb00/docs/tenorm/402-r-08-005-voli/402-r-08-005-v1-cov-exec-toc.pdf
Idealized Heap Leaching Process

Technologically Enhanced Naturally Occurring Radioactive Materials
Uranium Mining Volume 1: Mining and Reclamation Background
http://www.epa.gov/rpdweb00/docs/tenorm/402-r-08-005-voli/402-r-08-005-v1-cov-exec-toc.pdf
Mill Tailings Pond

Ranger uranium mill tailings pond, Australia
http://www.wise-uranium.org/uwai.html#UMIN
The Closed Tailings Impoundment at the Split Rock, Wyoming Disposal Site
DOE-LM Annual Update and Program Overview Richard P. Bush
NMA/NRC Uranium Recovery Workshop April 29, 2008
http://adamswebsearch2.nrc.gov/idmws/doccontent.dll?library=PU_ADAMS^PBNTAD01&ID=081440235
Global Nuclear Energy Partnership Technical Integration Plan

GNEP First Facilities Architecture
Initial GNEP deployment system architecture.
Simplified Purex Process
Spent Nuclear Reactor Fuel Reprocessing—Where Have We Been and Where Are We Going? Raymond G. Wymer, Vanderbilt University, January 29, 2007

irradiated fuel

fuel preparation

off-gases

nitric acid

dissolution in nitric acid

off-gases and cladding

solvent tributyl phosphate and kerosene

separation of fission products from uranium-plutonium

nitric acid recovery

uranium-plutonium partition

high-level waste

uranyl nitrate

plutonium nitrate

purification and conversion to oxide

UO₃ product

PuO₂ product
Duke Energy's CNO Said Opening Yucca Mountain Was Not Necessary to Advance Nuclear Power in the US

www.ustransportcouncil.org/documents/SummitV/meeting

Brew Barron posed the question to the United States Transport Council April 25, 2007 of whether the US needs Yucca Mountain to advance nuclear power and answered, "in my opinion, the answer quite simply is no."
NUCLEAR WEAPONS PROLIFERATION
Decline in growing season in Iowa (blue) and Ukraine (red) as a result of the amount of soot injected into the upper atmosphere. Impact of Indo-Pakistan and Soviet Wars shown. Green line indicates the natural variability of the growing season in USA corn belt.
The current international safeguards regime is inadequate to meet the security challenges of the expanded nuclear deployment contemplated in the global growth scenario.

The reprocessing system now used in Europe, Japan, and Russia that involves separation and recycling of plutonium presents unwarranted proliferation risks.
DIRTY BOMBS
NUCLEAR ACCIDENTS

<table>
<thead>
<tr>
<th>Energy Carrier</th>
<th>Date</th>
<th>Country</th>
<th>Energy Chain stage</th>
<th>Fatalities</th>
<th>Injured</th>
<th>Evacuees</th>
<th>Costs (10^6 USD1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>26.04.86</td>
<td>Ukraine</td>
<td>Power Production</td>
<td>31</td>
<td>370</td>
<td>135,000</td>
<td>339,200</td>
</tr>
<tr>
<td>Nuclear</td>
<td>28.03.79</td>
<td>USA</td>
<td>Power Production</td>
<td>0</td>
<td>0</td>
<td>144,000</td>
<td>5427.2</td>
</tr>
<tr>
<td>Oil</td>
<td>24.03.89</td>
<td>USA</td>
<td>Transport to Refinery</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2260</td>
</tr>
<tr>
<td>Hydro</td>
<td>05.06.76</td>
<td>USA</td>
<td>Power Production</td>
<td>14</td>
<td>800</td>
<td>35,000</td>
<td>2219</td>
</tr>
<tr>
<td>Oil</td>
<td>28.01.69</td>
<td>USA</td>
<td>Extraction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1947</td>
</tr>
<tr>
<td>Oil</td>
<td>07.07.88</td>
<td>UK</td>
<td>Extraction</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td>1800</td>
</tr>
<tr>
<td>Hydro</td>
<td>11.08.79</td>
<td>India</td>
<td>Power Production</td>
<td>2500</td>
<td>--</td>
<td>150,000</td>
<td>1024</td>
</tr>
<tr>
<td>Oil</td>
<td>30.05.87</td>
<td>Nigeria</td>
<td>Refinery</td>
<td>5</td>
<td>--</td>
<td>0</td>
<td>916.4</td>
</tr>
<tr>
<td>Oil</td>
<td>20.12.90</td>
<td>Bahamas</td>
<td>N.A.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>742</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>06.10.85</td>
<td>Norway</td>
<td>Exploration</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>622</td>
</tr>
</tbody>
</table>

Source: Project GaBE, 1998
SECURITY OF SUPPLY INCLUDING TOTAL COSTS (MARKET AND EXTERNAL) PLUS PUBLIC ACCEPTANCE ISSUES
External costs of electricity supply, EuroCent/KWh

(based on DLR, ISI 2006; study commissioned by the German Ministry of the Environment)

<table>
<thead>
<tr>
<th>Combined Cycle Thermal Efficiency</th>
<th>PV(2030) photovoltaic</th>
<th>Wind 2,5 MW</th>
<th>Lignite CC 48%</th>
<th>Gas CC 57%</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>0,38</td>
<td>0,06</td>
<td>6,1</td>
<td>2,7</td>
<td>...</td>
</tr>
<tr>
<td>Health effects</td>
<td>0,2</td>
<td>0,03</td>
<td>0,27</td>
<td>0,17</td>
<td>...</td>
</tr>
<tr>
<td>Ecosystem impacts</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>...</td>
</tr>
<tr>
<td>Material damage</td>
<td>0,006</td>
<td>0,001</td>
<td>0,008</td>
<td>0,005</td>
<td>...</td>
</tr>
<tr>
<td>Crop losses</td>
<td>0,004</td>
<td>0,0004</td>
<td>0,005</td>
<td>0,005</td>
<td>...</td>
</tr>
<tr>
<td>Major accidents</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Proliferation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Security of supply</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Geo-political effects</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>~ 0,58</td>
<td>~ 0,09</td>
<td>> 6,4</td>
<td>> 2,9</td>
<td>>> x</td>
</tr>
</tbody>
</table>

- ● = non-negligible effects are expected, leading to potential externalities
- ● = potential for significant effects, leading to potential conflicts with sustainability requirements
- ● = no significant effects (assuming operation of facility according to good practice)
PERSPECTIVE
CONCLUSIONS

As I have indicated,