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Outline

Effects of Radiation Must be Considered in Facility
Design (Shielding and Materials of Construction) and

= Shielding Chemical Processes (Rad|o|y3|s)
e Sources: Radioisotopes in Spent Fuel

e Concepts

e Evaluation Methodologies
e Radiolysis

e Concepts

e Radiolysis Effects in Separations Process
Solutions/Materials

e Radiation Effects on Materials

e Concepts SRS Canyon Photograph Pre- Operatlon (C|rca 1955)

e Radiation Effects on Seal and Gasket Overview of Radiation Effects on

Materials Materials and Systems Relevant to
e Radiation Effects on Structural Materials Nuclear Fuel Cycle Separations is

Presented
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Shielding — Source of Radioisotopes

Example of Research Reactor
Spent Nuclear Fuel —

e Radioisotopes include

e Alpha Emitters*

e Beta Emitters*

e Gamma Emitters

e Spontaneous Neutron Emitters

e Secondary Reactions (e.g. (o, n))

e Fuel Isotope Content
Dependent on Irradiation &
Decay Times

*There are few pure Alpha or Beta emitters, Gamma emission is concomitant

Epgores o
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Shielding — Source of Radioisotopes, CONT’D

Example of Research Reactor
Spent Nuclear Fuel —

Assembly Activity vs. Decay Time

e Materials Test Reactor LE+07
Design Assembly L
1.E+06
e HFR Petten Assembly #F1369 ;.05
e 93% Enriched 3 1E00s ‘\\
e 484 gm total U initial 216403 —+-total activity Act
e 158 Day Irradiation in 50 MW < 1E#2 \ T lotalaciviy PP
Reactor with 211 1.E+01 ——— . .
MWD/assembly, 58% Burn-up | ;g0

- 0 50 100 150 200 250

M = WA VT MARK
é ’?‘3 Hh active waste, L+86 .
_______ R < Decay Time (days)
| I 5 L
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Shielding — Source of Radioisotopes, CONT’D

Fission

Spent Nuclear Fuel, High Activity Products Ci
Radioisotopes — Actinides  Ci o169 121E+03
sr90 6.84E+02
e HFR Petten Assembly #F1369 th231 3.95E-04 y90 6.84E+02
pa233 6.34E-04 y91 2.25E+03
e 209 DayS COO| u235 3.95E-04 2r95 3.09E+03
u236 2.69E-03 nb95 6.28E+03
e Radioisotope Content u237 1.34E-04 ru103 3.33E+02
np237 6.34E-04 rh103m 3.33E+02
e Actinides with > 104 Ci np239 1.06E-04 ru106 6.81E+02
pu236 1.36E-04 rh106 6.81E+02
e Fission Products with > 102 Ci o238 | 57E+00 134 3355402
. u2 .25E-02 cs137 6.91E+02
e Note: Lists Do Not Include the Ezjj o o
Long-Lived Isotopes pu241 5.54E+00 ce141 2.86E+02
Important for Sequestration in am241 7.32E-03 cel44 8.59E+03
am243 1.06E-04 pr144 9.59E+03
a WaSte Form (eg TC-99) cm242 1.42E-01 pr144m 1.34E+02
cm244 2.80E-03 pm147 1.83E+03
total 7.34E+00 total 3.96E+04
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Shielding — Concepts

Non-lonizing

(No electron Removal)

Electromagnetic

Microwaves

Infrared
Radar
TV
Radio

lonizing

(Electron Removal)

Electromagnetic Particulate
Gamma Alpha
X-ray Beta
Neutron
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Shielding — Concepts, CONT'D

Penetrating Distances

Lo/

LI Paper Plastic Lead Concrete
e Alpha ]
"_1[5; Beta N
1 Gamma and X-rays
0¥
Ton_ Meutron
O
Type of Characteristics Range in Shield Hazards Source
lonizing Air
Radiation
Alpha Large mass, +2 Very short, Paper, skin Internal Pu, U
charge 1- 2iinches
Beta Small mass, -1 Short, 10 feet Plastic, glass, Internal, external Fission &
charge metal skin & eyes activation
products
Gamma/x-ray No mass or Several 100 Lead, steel, Whole Body Fission &
charge, photon feet concrete internal or activation
external products
Neutron Mass, no charge Several 100 Water, concrete, Whole Body Cf, neutron
feet plastic internal or sources
external
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Shielding — Concepts, CONT’D

Gamma Ray Interaction with Matter

Photoelectric Effect % / hf = ¢ + F 3

Bg %B@G@ @9
vy
}L i j;n h
Compton Effect ALANANAE S = = = A=A=— (1 —COS 9)
\ mecC
Pair Production L «\ C hf22mc =1.02MeV




Shielding — Concepts, CONT’D

Mass attenuation coefficient, cm’ /g

z
7

3

=
=
s

|

2
I

URLEY o

Fig. 3.18 The mass attenuation coefficsents of lead as a function
of y-ray energy.

Ref: J.R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley, 1975

Epgons

Egvirerrnental Moresgersent
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Shielding — Evaluation Methodologies

Gamma Radiation — Exposure Rate for Flux at
Initial Energy E,

e Exposure Rate With No Shield:

Xy =0.0659E (1, / p)acPy  (mR/hr)
e Exposure Rate With Shield:

X =0.0659E,(1, / p),.#, (mRihr)

ST,
A
e
o LE) b
EEIy AN Eni
= NS
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Shielding — Evaluation Methodologies, CONT'D

Gamma Radiation — Buildup Flux

e Scattered Radiation is Built-Up at
Lower Energies from Compton-Scattered
Radiation (primarily); and Pair-Production
and X-rays from Photoelectric Absorption
(due to e’s slowing down)

e Buildup Flux:
e For Point Source at Distance R :
—uR
Se "B, (uR)
47R*

@, = @, x Buildup =

e Buildup Factor:

e Point Source Factor (Taylor Form):

il ED

E, E

Fig. 1L Energy spectrum of
incident w-ray beam.

wHE}

EE

Fig. 1.3 Energy apectrum af y=ravs

emerging from shield



Shielding — Evaluation Methodologies, CONT'D

Use Point Kernal Methods with Buildup Factors to Account for Scattered or Secondary
Photon Flux in lieu of Transport Calculations

Uncollided Radiation Doses

e Determine Dose at Point of Interest Without Accounting for Interaction with Medium (e.g., air
medium)

Point Kernel for Uncollided Doses

e Determination of Dose at Point Detector per Particle of Given Energy Emitted from Isotropic
Point Source

e Allows Determination of Uncollided Dose Due to Distributed Source by Decomposing Source
into Set of Contiguous Effective Point Sources and Summing Contribution

Buildup Factor Concept

e Based on Attenuation and Scattering Characteristics of Medium (infinite)

e Ratio of Total Dose, Scattered Dose plus Uncollided Dose, to that of Uncollided Dose Only
Buildup Factor Geometry

e Use of Adjustment Factors for the Buildup Factor at Boundary of Finite Medium Based upon
Depth of Penetration in Infinite Medium

Point Kernel Computer Codes
e MicroShield, QAD, QAD-CG, QADMOD, and G3

e Deconvolve Problem to Small Finite Elements. Determine Uncollided Dose Kernel and Buildup
Factors. Sum to Obtain Total Dose

 F
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Shielding — Evaluation Methodologies, CONT'D

Considerations in Neutron Shielding

e Similar Concepts as for Gamma Shielding

e Significant contribution to dose from secondary
photons from inelastic neutron scattering and from
radiative capture

e |sotopic (Rather than Elemental) Composition of
Medium

e Challenges with Shine or Indirect Streaming
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Shielding — Evaluation Methodologies, CONT'D

Deterministic Transport Theory

e Linear Boltzmann Equation is Solved Numerically

e Discrete-ordinate Methods

e Multigroup Form of Transport Equation Integrated over Each Spatial and Directional
Cell of Mesh of Geometry

e Problems with Irregular Shapes and Boundaries where Simplified Techniques such as
Point Kernels with Buildup Cannot be Used

e Can Treat Very Deep Penetration Problems
e ONEDANT, TWODANT, TORT, DANTSYS, PARTISN, XSDRNPM

Monte Carlo Methods

e Simulation Made of Stochastic Particle Migration through the Geometry
e Probability Relationships of Radiation Interacts with the Medium
e No Use of Transport Equations
e Complex Geometry Simulations
e Computationally Very Expensive, Especially for Deep Penetration

e MCNP, MCNPX, KENO V.a, KENO-VI, EGS4, TIGER
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Shielding — Radioactivity Units

Units to Characterize Amount of Radioactivity
e Curies (Ci)
e 1 Ci=3.7 x 10"° decays/sec
e Total or Radionuclide-Specific
e Becquerel (BQq)
» 1 Bq =1 decay/sec
e Total or Radionuclide-Specific
e Decays per Minute per milliliter (dpm/ml)
e Used to Characterize Activity of Solutions

e Total or Radionuclide-Specific
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Shielding — Exposure/Dose Units

fAti Measures Effect On Type of Relates to Conversion
Radla_tlon Radiation
Unit
Roentgen (R) Exposure Air Gamma and x- 1 R =1000
ray milliroentgen (MR)
rad (Radiation Dose Any Material All Types 1 Gy =100 rad =1 J/kg
Absorbed _
Dose): 10 pGy = 1 mrad
Gray (Gy) 1 Wh/l =2 360,000 rad
rem (Roentgen Dose Man All Types Accounts for 1Sv=100rem
Equwalfent Equivalence Difference in 10 uGy = 1 mrad
Man); Dose and
(Dose Damage
Sievert (Sv) Equivalence 9
= Dose x
Quality
Factor)
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Shielding — Dose Limits

DOE Limit DOE Admin Control SRS Admin
(rem/yr) (rem/yr) Q' NgB2d
y y Workers
(rem/yr)
Whole Body 5 2 1.0
Extremity 50 n/a n/a
Skin/Other Organs 50 n/a n/a
Lens of Eye 15 n/a n/a
Visitors/Public 0.200 n/a n/a
Pregnant Worker 0.5 during gestation
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Shielding — Dose Limits, CONT’D

Derived Air Concentration (DAC) and Annual Limit on Intake (ALI)

e DAC are Derived Limits on Radioactivity Concentration in Air
(MCi/ml) Intended to Control Chronic Occupation Exposure

e Radionuclide-Specific

e DAC = ALI(in pCi)/(2000 hours per working year x 60
minutes/hour x 2x10* ml per minute) = ALI/(2.4x10°) pCi/ml

e C,/DAC, + Cz/DAC, + Co/DAC, + .... <1
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Radiolysis — Concepts

e G-values

e G =# Molecules Produced per 100 eV
absorbed energy

e Dependent on Incident Radiation Type

e Forward (Radiolytic) vs. Back
Reactions

® Forward: H20 incident radiation \H 0+ OH e H, H2029 H2

aq?’ aq?’

e Backi  wmimo,->om+H0

OH+H,—>H+H,0 T 7
~10A
H,+H,0, —>2H,0 |

| ~ 1000 A !

e Reactions of Unstable Intermediates

Controlled by Thermodynamics 0.3::-' -.:,-oog%g, \\\\“

Schematic depicting the formation of H and OH radicals in the
track of a 1-MeV electron (a) and alpha particle (b).
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Radiolysis — Concepts

Example: Net H, Production in a System Due to Radiolysis

dH, /dt = gross production—removal

(de/dt)Prod - (GHz,nEa,n +GH2,yEa,y +GH2,aEa,a +GH2,aEn,a +GH2,}'EH,}’)
:GH2,nEa,n +GHM(EM +En,7)+GH2,a(Ea’a +EM)
(dHZ/dt)Rem :GHz,r (Ea,r +En,7)

where:

:am .mm .mm

RN

En,a =

E,, =

energy absorption density (eV/cm’-min) due to fast neutrons,

energy absorption density (eV/cm’-min) due to gammas,

energy absorption density (eV/cm’-min) due to alpha particles (assume all alpha energy deposited
in water),

energy absorption density (eV/cm’-min) due to alpha particles produced by the '°B(n,a)'Li
reaction,

energy absorption density (eV/cm®-min) due to gammas produced by the H(n, y)D reaction, and

G = G-values for molecular hydrogen production by gamma, neutron, or alpha particle radiation
(molecules H,/100 eV).
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Radiolysis — Effects in Separations Process Solutions

e Tri-n-butyl Phosphate (TBP)
e [BP Used in PUREX and HM Processes

e Chemical (Hydrolytic) and Radiolytic Reactions Decompose TBP

e Breakdown Sequence: TBP — Dibutyl Phosphoric Acid (HDBP) — Monobutyl
Phosphoric Acid (H,MBP) — Phosphoric Acid (H;PO,)

e Many Hydrocarbons Formed Through Radiolysis of TBP
e Ferrous Sulfamate

e Fe(ll) Used to Reduce Np(V) to Np(IV) and Pu(lV) to Pu(lll) for Subsequent
Separation; Protects Reduced Pu and Np from OH- Radical

e Sulfamate Added to Prevent NO5 Oxidation of Fe(ll)

e Radiolytic Reactions Decompose Fe?* and Sulfamate
e Radiation Effects on lon Exchange Materials

e Various Resin Systems are Used

e Radiation Causes Loss of Exchange Capacity

e Radiation Causes Gas Evolution
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Radiolysis — Effects in Separations Process Solutions, CONT’D

Radiolysis of TBP S ey S B

BALDWIN HpD - SAT'D TEBP

BROODDG— HEIMEM: A% -FREC'D TEBPF/n—-ALIPH DIL.

BURGER - McCLANAHRN: DRY TEPSISOOCTANE

BURGER - McCLAMAHARNT HzD - SAT'D TEPS
ISOOCTAME

BURGER - McCLAMAMAN! D&Y TAP/LSOOCTAME

BURGER - McCLANAKAKN! DRY TEBPSSOLTROL

BURR

HMOLLAND &F 2l.! DAY TAPSn —DODECANE

SRI GROUF: DRY TEP/AMSCO 125 -82

SRL SROUP: HaD- S4T'0 TER/AMSCO 125 - 62

WL LIAMS AND WILKMNSON: TEBPSOLK '§

e Radiolysis of TBP Alone or in
Diluents, Anhydrous or
Water-Saturated Cause
lonized or Excited TBP

ne0obak eocddd

il
I

e Radiolysis Product in

=]
Greatest Yield is HDBP /F,

[
e

TOTAL ACID OR HDBP YIELDS [malecules /100 eV]

e Greater Yield in Anhydrous
TBP than Water-Saturated s

e Anhydrous: G = 3 total acid 'ée “
molecules/100 eV o | ! I | | |

o 200 400 &0 BOO 1000 1200

TEHP CONCENTRATION {(gsL)
e Water-Saturated: G = 1.8

FIGURE &  Corelason of poblished dats for yields of toal acid and HODBEP
H from irrsdiation of THBEP-alif i diluen welwii Moses: 1) *5C wsed as radiagion
total acid molecules/100 eV wource except for s 7 (spent fucl). (2) Venieal bus lengihs for dileent-fe
TEBF comespond,. approcimately, 1o siondard deviatbons. (Dweta takes from Rel-
erences F_ 4,6, 9, 12, and U4 w0 20}

Ref: Chapter 7, “RADIOLYTIC BEHAVIOR,” in Science and Technology of Tributyl Phosphate, Volume
I, Wallace W. Schulz and James D. Navratil, eds., CRC Press, Inc., 1984
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Radiolysis — Effects in Separations Process Solutions, CONT'D

ORNL-DWG 84-1033

Total Degradation of TBP

e [BP Degradation is
Due to Hydrolysis and
Radiolysis

e Strong Effect of
Temperature on TBP
Degradation Rate

TBP DEGRADATION (as g of complexed Pu)

o et
o 0.5 1.0

TIME (d )

Fig: 6. TBP degradation rates due to acid hydrolysis, alpha radiolysis,
and metal-ion—induced hydrolysis at BO°C {shown as =mg of plutonium complexed
by degradation producte for each factor).

Ref: M.H. Lloyd and R.L. Fellows, “Alpha Radiolysis and Other Factors Affecting Hydrolysis of Tributyl
Phosphate,” ORNL/TM-9565, June 1985
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Radiolysis - Effects in Separations Process Solutions, CON

Radiolysis of Ferrous Sulfamate
Fe(SA), or Fe(ll) + (NH,SO;),

e If Fe2* not Present, Quick
Reversion of Np(IV) to Np(V)
and Pu(lll) to Pu(1V)

e High Dose Rate Process
Solution Can Cause Rapid

0.020 " T T T T T

g [ ]
c N -
k= N ]
0010 -
c - .
g n ]
=] = -
0 - -
oF ]

0 8

Time (h)

Fig. 2. Depletion of Fe(ll) from radidlysis by dissolved fission
products of U in actual process solution. Dose
rate =1.5 X10% rad/h, T= ~25°C.

1.1 T T T T T T T T T

D

Depletion of Fe?*

Ref: N.E. Bibler, “Radiolytic Instability of Ferrous Sulfamate in Nuclear Process Solutions,” Nuclear

Technology, Volume 34, August 1977

@ SRNL |

Epgons

Egvirerrnental Moresgersent

%LU T ry L 4 —100
E 09 - B".]t'
§08 1602
& 0.7 - 40 5
306 . _ 120%
« 0.5 T - +4 0

4 1 1 | I | 1 1 ] 1

0 0 1 2 3 4 5 6 7 8 9 10

Fig. 3.

Time (k)

Dependence of the redox potential and fraction of
BINp or P®Pu in the 4+ state on radiolysis by dissolved
fission products of ***U in an actual process solution.
Dose rate = 1.5 X 10* rad/h, T =~25°C, ® = redox
potential, ® = percent Pu(lV), and & = percent Np(IV).
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Radiolysis — Effects in Separations Process Solutions, CONT’D

Radiolysis of Ferrous Sulfamate 0.031- .

Sulfamate

e C0-60 Gamma Irradiator
Used to Investigate
Radiolysis Effects in
Process Solutions

0.02— —

=
c
e
=
™
=
-
g
c
Q
(&

e Both Fe?* and Sulfamate are 00!
Depleted

o ]

0 1.0 2.0
Time (h)
Fig. 1. Depletion of Fe(ll) and sulfamate from o gamma

radiolysis of simulated process solutions. Dose rate =
6.09 X 10° rad/h, T =30 to 37°C, ® = Fe(ll), and
® = sulfamate.

Ref: N.E. Bibler, “Radiolytic Instability of Ferrous Sulfamate in Nuclear Process Solutions,” Nuclear
Technology, Volume 34, August 1977

INTRODUCTION TO NUCLEAR FUEL CYCLE SEPARATIONS — NUCLEAR RADIATION e



Radiolysis — Effects in Separations Process Solutions, CONT’D

Radiolysis of lon
Exchange Media

[ ]

e Doses of 10° to 10° # 700 DOWEX 50X 4 .
Gy Significant to L L T
Synthetic Organic lon 2 sof- P
Exchangers g o

e Polycondensation E
Type Resistant to 8
Radiation Damage, }
but Overall Initial R R
Properties Poor PP e m:rm mf :1-:}'“51:

e Gas Evolution During ~ Fi& A smpariton of tho changs i total cxchango capacity of 4% cross Enked styrene DVB
Radiolysis

sulfonic acid resns (from References 31, 35, and 38)

Ref: K.K.S. Pillay, “A Review of the Radiation Stability of lon Exchange Materials,” Journal of
Radioanalytical and Nuclear Chemisry, Articles, Vol. 102, No. 1 (1986) 247-268.
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Radiation Effects on Materials — Concepts for Polymers

Effects on Polymers
e |rradiation Effects
e Loss of Elasticity and Sealing Ability; Gas Evolution; Leaching
e Important Factors
e Total Dose (rad); Dose Rate
e Presence of O,
e Degradation Mechanisms — One Mechanism Frequently Predominates

e Scission: Molecular Bonds Ruptured - Reduces the Molecular
Weight and Strength; Gas Evolution

e Cross-Linking: Polymer Molecules Linked to Form Large 3D
Molecular Networks — Causes Hardening and Embrittlement

e Enhanced Oxidation
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Radiation Effects on Materials — Concepts for Polymers, CONT’

D

Adagerial Eadisiben Siabilily Comments
Effects on Polymers, CONT'D ==
e C S O n O y e r S ] Polyethylene. various densities Crood Excellem : High-density grades not as stable o medium- or loy density grades.
Pelyvamides inyloa) Crood Mylons 10, 18, 12 &6 are more sSable than 6. Flm and fiber are less resistanl
Polyimidis Excellent |
M M M H Polysullom: el Natural matirial i yullow
e Radiation Effects Difficult to
. Fedyviny| chlonkde (Y Ch Crowd Wellows, Antioxidants and stabilizers prevent vellowing. High-molecular-wel ght
o stabibizers improve rdiaticn sealalitg: eolor-cormeeted mdiation
Predict foreain o ot
Folyvinyl chlorde Folyvimd acetate Crood Less nesistant tham FVC.
Polyvin lidene dichloride (Saran) i Less nesistant tham FVC.
. Styrenc anybonitrile (SAN) Grood Eacellem
Polycartome Crood Excellem Yellows, Mechanical properties not greatly affected: color-commected rliation
e For Carbon-Carbon Chains
Podypropsy lene. naburl P Fair Phyical propertics greatly neduved whin i e, Radistion-nbilized grdes,

wl alkoyed with
applications, High-dose-mme

(Backbones), Cross-Linking will ™ Py e Bk LS

ared PEA are significantly damaged. The others show

Occur if H attached to C; e L b

Polychlomtrilluorcethylene
{PCTHE {rood Excellent

Scission will Occur at Tetra- e TR [

Elbytene-setmallamsethy lene

Substituted Carbon

Cellubosics: Esters degrade less than cellulose does.
Esters E
Cellulose acetate propicnme

e« Polymers with Aromatic e

Puolyacetals Pirirt. Irendiitiom civeas cmbrillioment. Color chimgpis have boen noted Cyellon T gneesil.
H ARS ol High-impact grndes arc o0l i adialion rsistan a3 sbandiard-imgact gradie.
olecules More Resistant than
. B Podywret s o Excellem Arcanatie dissolors: polvestens mane stalile thin esters, Retains
physical propenies.
I p a I C Ligquid crystal polymer {LCFy Excellen Commeereial LOPs excellent; natural LOPs mot stable
Poedyesters Crood Excellem PET ned as radiation stabde as PET.
Thermoscts:
Phemalics licm of mineral fillers.
Epon
. O S re n es Pulyesters om of mincral or gliss fibers
Ally] diglyool carbanate (polyestern) Excellem Blaintaing. excellen oplical propenice aller madistion
Polyurnchancs:
Adiphatie Excellem
L L Arcrnalic Crocd Excellem Darkening can ecour. Pessible breakdonwn products could be derived.
e Polyimides
Lrethane Excellen
EPDM Excellem
Mmtural mbber Crood Excellem

Mikrike Gl Exce e Discaloms
el Diigcalos. The addition af aromatic plisticismm renders the miterial more

e Loss of Mechanical Properties | 2 2 T

cure Is superior o percmide cuse: Tl core duri facture cam clminme

most mﬁlu:r:dulm-:trume.
mportan - e
Polyacrylic Foor

Butyl Poor Friable. sheds parficulaies.

Taeble I. General guide to radisfion stebility of polymer meferiels,?

Ref: K.J. Hemmerich, “RADIATION STERILIZATION, Polymer Materials Selection for Radiation-

Sterilized Products,” Medical Device & Diagnostic Industry, Feb 2000, p. 78

Chiorosulfonated polyethylene Poor
™
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Radiation Effects on Materials — Concepts for Polymers, CONT'D

e Dose in air for 25% Elongation Loss in Polymer Materials

o 25 5 100 200 00 400 500 kGy o 500 1000 1500 kGy
- ' B e e e e )
Epoxy (aronvatic) »
Liquid crystal polymar »
RIS Phenelic >
Palyester (th 1} >
Polyethylenes Felyatyrens »
Polyurelhane {thermasol) .
Polyvingiidans uornda (ynar]
Polyesters Folyutiylese fow/med )
R . FET [polyesiaor, npid)
n_glneenng resins ETE (ﬁﬂtj saber, Nl llﬂ‘]
(high-peert: } > Polimid
Polycarbenate! > ECTFE
pabyurcilaines AES
High-impact slyrens [HP5)
Polpurethanis b Palyearbosste
Polyzullons Udsl
Ve PYC, Sexibie
“— Rigidisemirigid P Polyvimlidans chiorkss {Sanan)
Blierad ruliber (Rasx)
Fluaropolymess
thigh-perfarmance) — ETFE (Tetzel) > m‘:‘“‘f““ "fmm
ey ¥’ &
ABS .’ Prbyetsyless (UEMW P YT —
EPDM TP
’ PET {polyostes) o et
Elasiomars Polyamide (nywons 10 511) ~[—
Polyviml chionide (figidisemi] - fe—
Nylon {potyamides) P Celluloss acatats Dutyrels g
Nybon Sinyton 12 \lmcl'phou:i nybon Cellubosn acetade propiocale prome
Celhulose and SEBS {Kralan} P
copolymers *+— Callulosaipapar Polystiylese (HDPE) —
Aerylic (PABAR) and Acryhc copelymors =t
copolymers Nenpeese rubbsr e—
Silieome mibber pre—
Polypropylene Polyamlde [nytans & & 12} J—
{risdfiation gracs) 285 (Righ-impocl) ea
Polymetiyl peatens -
Folymethyipentens pe etabilizod ] NOTE: This shart régresonis i bast avallabic daid &5 of thls
hrapyten [stabilized) [ date and is mferded 75 3 puidance. Specific resin farmalalions
Butyl rubber = mast b evaiualed in the Intandad appiication far the eltecls af
FEP Cellulose, satural (calfon, paper) radiation amd:
Acryi (AN o )
Polyprapylene: Celluloge acstate S (1] Residusl and dnction) stress,
frateal Eriviiol Slilotide:betine [ .’»iﬁ ﬁﬁmmmmud distribufion,
FE®. {Ffion) I (4) Morpiolopy. :
Acetals Polypropylene, natsml 1 (5] Envi (oxygenteny )
Agatal Dekin/Celcon) + (6) Doge rate,
PTFE TFE (Tellan) 1

Ref: K.J. Hemmerich, “RADIATION STERILIZATION, Polymer Materials Selection for Radiation-

E m“,Sterilized Products,” Medical Device & Diagnostic Industry, Feb 2000, p. 78
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Radiation Effects on Materials — Concepts for Polymers, CONT'D

106 PP BT BTN S P |
Dose Rate Sensitivity ]

e Polymers are Susceptible to
Oxidation, which is Diffusion-
Limited

e High Dose Rate Exposures
May Not be Indicative of
Aging in Low Dose Rate
Environments T T —

o e 1 10" 10° 10' 102 10° 10
e Materials “Qualified” for 40- .
: ) : SHIFTED DOSE RATE, GY/ (50°C Ref)
year Service Life May Fail

Sooner Dose to 50% elongation loss in PVC cable insulation
(Data shifted by superposition to a reference temperature of 50°C)

Ref: NUREG/CR-2877, SAND81-2613, “Investigation of Cable Deterioration in
the Containment Building of the Savannah River Nuclear Reactor”, K.T. Gillen,
R.L. Clough, L.H. Jones, August 1982.
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Radiation Effects on Seal/Gasket/Coating Materials In
Separations Service

Empirical Knowledge Base — In Vitro Testing and Service
Experience

e Fluoropolymers — needed for chemical resistance tes1
e Teflon —initial damage at 1-5E4 rad, severe damage at 1-10 Mrad
e Jumper Gaskets: Teflon-asbestos (functional to 100-1000 Mrad)

e Viton® B — FKM fluoroelastomer, older formulations with lead oxide, not
suitable for TBP solutions

e Kalrez® FFKM perfluoroelastomer — expensive, acids at high temp
e Halar®/ECTFE — low permeability, possible chloride release
e Tefzel®/ETFE copolymer — used in HLW transfer lines, ball valves

e Kynar®/PVDF — most resistant fluoropolymer, less resistant to strong
nitric acid or NaOH solutions (stress-cracking).

INTRODUCTION TO NUCLEAR FUEL CYCLE SEPARATIONS — NUCLEAR RADIATION @



Slide 31

tesl y5916, 12/3/2008



Radiation Effects on Materials — Concepts for Metals

Effects on Metals

e Irradiation Effects

e Radiation Hardening & Embrittlement at Low Irradiation
Temperatures (T, <03 T, )

e |Important Factors in General
e Total Displacement Damage and Damage Rate
e Irradiation Temperature
e Spectral Effects

e Degradation Mechanisms

e “Black Spot” Damage at Low Irradiation Temperatures
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Radiation Effects on Materials — Concepts for Metals, CONT'D

Radiation Damage Phenomena: n-Irradiation of Crystalline Materials
Displacements of Atoms from Crystalline Lattice Can Lead to:
e Point Defects Above Thermal Equilibrium
e Extended Crystalline Defects

e Solute Segregation & Phase Transformations (Enhanced
& Induced)

Transmutations Due to Capture Can Lead to:
e Chemical Changes
e Phase Transformations

e Helium Build-in

STy,
a9
£ (=
= L el S

I ray-
E= SN

Mmm
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Radiation Effects on Materials — Concepts for Metals, CONT'D

Radiation Damage Phenomena: n-Irradiation of Crystalline Materials

Primary Knock-On Atoms Pmm\
RADIATION
CASCADE(I)
\

e Neutron transfers PARTIGLE
Energy to Lattice atom

e One Neutron Can create
Many PKAS

Cascades from PKAs
e Create Free Defects

e Recombination
pASCADE(Z)

e Dislocation Loops

IRRADIATED
MATERIAL

e Stacking Fault
Tetrahedra

CASCADE(3)
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Radiation Effects on Materials — Concepts for Metals, CONT'D

Displacements per Atom Formulation

v(T) = 0 displacements  for T<E, E4 = threshold
energy to cause
v(T) =1 for E4<T<2E, a displacement
v(T) = 0.8T/(2E) for T>2E, from a crystalline
position
dpa e do(E,T
K| P2 =N j ®(E)dE j y(1) 37Dy
sec dT

Displacement Rate for Elastic Collision Events
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Radiation Effects on Metals in Separations Systems

DISpIacements Displacement Cross Section for Gamma on Steel
from: 1000.00 =

oo | /
EE =40 eV Displacement Energy
10.00 = /

1.00 E=

e Alpha/Beta —
Near Surface

— 28 eV Displacement Energy

e Spontaneous
Neutrons —
Very Low
Dose

mb/electron

e Gamma —

Very LOW 010 T T T T
Dose 0.0 1.0 2.0 3.0 40 50 6.0 7.0 80 9.0 10.0 11.0

Displacement Cross Section,

Gamma Energy, MeV
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Radiation Effects on Metals in Separations Systems, CONT'D

No

FREQUENCY (% of total)

Significant Impact to Mechanical Properties Expected for Separations Tanks
Defect Cluster Density in Neutron-Irradiated Stainless Steel Coarsens Slightly Between 0.06 and 0.5 dpa, Tirr=120°C
DEFECT CLUSTER SIZE DISTRIBUTION IN DEFECT CLUSTER SIZE DISTRIBUTION IN
NEUTRON IRRADIATED STAINLESS STEEL NEUTRON IRRADIATED STAINLESS STEEL
35 | I T | T T I T T | T | 1 T T
: 304 STAINLESS STEEL
30 +— — 0.52 dpa, 120°C
N = 5.5x 1023/m?®
304 STAINLESS STEEL d=27nm
0.065 dpa, 120°C
o5 | N > 6.0x10%%/m3 |
d = 1.66nm 15
g
20 - 5
>
2
Wio
15 = 8
&
10 =
5
5 —]
0 L L L I 0
0 1 2 3 4 5 6 7 8 9 0 1 203 4 5 6 7 8 9

IMAGE WIDTH (nm)

IMAGE WIDTH (nm)

Ref: S.J. Zinkle and R.L. Sindelar, "Defect Microstructures in Neutron-Irradiated Copper and Stainless
Steel," J. Nucl. Mat. 155-157 (1988) p. 1196

Epgores o
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