Sol-Gel Synthesized Sorbent Development and Analysis for Column Separations

Lawrence L. Tavlarides,

Department of Biomedical and Chemical Engineering

Syracuse University Syracuse, NY 13244

Outline

- Introduction
- Synthesis Methods of Adsorbents
- Sol-Gel Synthesis Issues
- Applications Examined
 - Mercury Removal
 - Noble Metal Separations
 - Germanium Separation
- Analysis of Adsorption in Batch and Column Systems
- Conclusions

Introduction

- Examples of sorbent separations in the fuel cycle and nuclear waste process:
 - ⁸⁵Kr, ¹²⁹I and ¹⁴C as ¹⁴CO₂ gas capture from spent fuel dissolution.
 - ⁹⁹Tc as pertechnetate anion (TcO₄⁻) removal from dissolved spent fuel in the UREX process (modified PUREX)
 - Mercury ion separation from nuclear waste solutions.
- New robust sorbents of high selectivity, capacity and stability and stable mechanical properties are required.
- The Team at Syracuse University develops such sorbents using sol-gel methods and demonstrates sorbent usefulness in column applications.

Covalent Attachment to Support by Method A (L. L. Tavlarides et al. CRC Press, 2008. With permission)

Step 1: Immobilization of Coupling Agent

- X: Halide, Alkoxy, Acetoxy, and/or Hydroxy
- R: Substituted or Unsubstituted Alkyl/Aryl
- P: Appropriate Reactive Group

Step 2: Ligand Attachment

$$\begin{bmatrix} O \\ O \\ O \\ O \end{bmatrix} Si-R-P + P'-L(Z_a)_b \qquad \underbrace{S^*}_{O \\ O \\ O \\ O \end{bmatrix} Si-R-L(Z_a)_b + PP'$$

P': Appropriate Reactive Group

Za: Donor Atom of Type 'a'

- a = 1 8 (upto eight) types
- b: Number of each Donor Atom per Ligand
- *: Different Reaction Schemes to Attach Ligand

Covalent attachment to support by Method B (L. L. Tavlarides et al. CRC Press, 2008. With permission)

Step 1: Ligand Attachment to Coupling Agent

$$X_3Si-R-P + P'-L(Z_a)_b \xrightarrow{S^*} X_3Si-R-L(Z_a)_b$$

Coupling Agent

Ligand-Coupling Agent Derivative

*: Different Reaction Schemes to Attach Ligand

Step 2: Immobilization of Ligand Coupling Agent Derivative

$$\begin{bmatrix} OH \\ OH \\ OH \end{bmatrix} + X_3 Si-R-L(Z_a)_b \qquad \longrightarrow \qquad \begin{bmatrix} O \\ O \\ O \end{bmatrix} Si-R-L(Z_a)_b + 3HX$$

Choice of Ligand Attachment Scheme:

- 1. Depends on Reactive Groups and Conditions
- 2. Desire to Achieve Ligand with Specific Donor Atoms and Preferred Geometry
- 3. Desire to Achieve High Ligand Density on the Support Surface

Examples of Adsorbents Developed by Covalent Attachment Technique

(N. V. Deorkar et al., Emerging Separation Technology II, 1996. With permission)

Support	Functional Group	Method/Coupling Agent	Metal Ions
Silica gel	5-methyl-8-hydroxy- quinoline	Organic functional silane derivatives in solutions and surface	Pb(II), Cu(II), Ni(II), Cd(II)
Silica gel	Thio Sulfide acid	Organic functional silane in solution	Cd(II), Hg(II), Zn(II), Pb(II)
Silica gel	Primary secondary and tertiary amines, and diazole	Organic functional silane on surface	Cu(II), Ni(II), anionic cyanide complexes, Cr ₂ O ₇ ²⁻ , CrO ₄ ²⁻
Silica gel	Pyrogallol	Derivatization on surface modified with organo- functional silane	Antimony(III) Al(III), Cu(II)

Functional Group Clustering

²⁹Si-NMR Spectra: Oligomerization vs. time

(J. S. Lee et al. Reactive & Functional Polymers 49, 2001. With permission) 3-mercaptopropyl-trimethoxysilane (MPS)

Adsorbents Developed by Sol-Gel Processing

Thiol System (SOL-AD-IV) Precursor : 3-(mercaptopropyl)trimethoxysilane Target Jone: Cadmium Load, Mer

Target Ions: Cadmium, Lead, Mercury, and Copper

- Precursor : 1-(triethoxysilylpropyl)imidazoline
- Target Ions: Platinum, Palladium, Gold, and Rhodium

Adsorbents Developed by Sol-Gel Processing

- Kelex-100 System (SOL-KELEX)
 - Precursor : Aminopropyltriethoxysilane
 - Target Ions: Germanium

- Pyrazole System (SOL-PzPs)
 - Precursor : N-(trimethoxysilylpropyl)pyrazole
 - Target Ions: Platinum, Palladium, Gold, and Rhodium

Synthesis Conditions of Sol-Gel Adsorbents

SOL-AD-IV

- Chemical Compositions
 - MPS : TEOS = 1 : 2
 - MPS : EtOH : H_2O : HCI : NaCl = 1 : 3 : 3 : 0.01 : 0.01
 - TEOS : EtOH : H_2O : HCl : NaCl = 1 : 4 : 4 : 0.006 : 0.01
- Reaction Time
 - MPS condensation : 3 hrs
 - TEOS condensation : 30 mins
 - Co-condensation : 5 mins

SOL-PzPs-BD-5

- Chemical Compositions
 - PzPs : TEOS = 1 : 2
 - PzPs : EtOH : H_2O : HCl : NaF = 1 : 3 : 3 : 0.01 : 0.01
 - TEOS : EtOH : H_2O : HCI : NaF = 1 : 4 : 4 : 0.01 : 0.01
- Reaction Time
 - PzPs condensation : 2 hrs
 - TEOS condensation : 15 mins
 - Co-condensation : 5 mins

For induction of gelation : TEA(triethylamine) is added $[TEA]:[HCI]_T = 1:0.35$

Synthesis Conditions of Sol-Gel Adsorbents

SOL-KELEX

- Chemical Compositions
 - APS : TEOS = 1 : 3
 - APS : EtOH : H_2O : HCl = 1 : 4 : 1 : 10⁻⁵
 - TEOS : EtOH : H_2O : HCl = 1 : 3 : 1 : $3x10^{-5}$
- Reaction Time
 - MPS condensation : 15 mins
 - TEOS condensation : 15 mins
 - Co-condensation : 5 mins

SOL-IPS

- Chemical Compositions
 - IPS : TEOS = 1 : 2
 - IPS : EtOH : H_2O : HCl =
 - $1 : 3 : 2 : 4.5 \times 10^{-3}$
 - TEOS : EtOH : H_2O : NaF = 1 : 4 : 1 : 0.67x10⁻³
- Reaction Time
 - IPS condensation : 30 mins
 - TEOS condensation : 30 mins
 - Co-condensation : 5 mins

Comparison of Sol-Gel Adsorbents with Other Types of Adsorbents

			F	Palladium Separation	
Adsorbent	Capacity	BET A	nalysis	Functional Group	Reference
		D (Å)	$SA(m^2/g)$		
Chelating resin	65.4			DEHTPA / impregnated polymer resin	Rovira et al., Sol. Extr. & Ion Exch., 17, 1999
Doulite Ge-73 resin	28.5			Thiol / polymer resin	Iglesias, Anal. Chim. Acta, 381, 1999
SOL-IPS	162.3			Imidazole/ sol-gel processing	This study
SOL-PzPs	150.8	37	437	Pyrazole / sol-gel processing	This study
				Mercury Separation	
Chelating resin	562	107	41	Thiazole and thiazolin / polymer resin	Sugii A. et. al., Talanta. 27, 1998
Functionalized silica	505	55	900	Thiol / covalent attachment on SAMMS	Feng X. et. al., Science, 276, 1997
SOL-AD-IV	1280	82	640	Thiol / sol-gel processing	This study

Comparison of Sol-Gel Adsorbents with Other Types of Adsorbents

Germanium Separation					
Adsorbent	Capacity	BET Ar	nalysis	Functional Group	Reference
		D (Å)	$SA(m^2/g)$		
Activated Carbon	10.1			H ₃ PO ₄ -activated carbon,	J.P. Marco-Lozar
Cellulose	115.2			di(2-hydroxyethyl)amine / polymer	Y. Inukai
Goethite	4.3			FeSO ₄ / oxidative hydrolysis	O.S. Pokrovsky
SOL-KELEX	23.8	72	421	Kelex-100 / sol-gel processing	This study
				Cadmium Separation	
ISPE-302	19.7			Cyanex-302 / solvent deposion on silica	Deorkar et al., Emerging Separation Technology II, 1996
ICAA-S	71.1			Thiol / covalent bond on silica	Deorkar et al., Ind. Eng. Chem. Res., 36, 1997
Chelating resin	146.0			Mercaptoacetamide / polymer resin	Colella et. al., Anal. Chem., 52, 1980
SOL-AD-IV	222.3	82	640	Thiol / sol-gel processing	This study

Removal of Mercury

- Scrubber solution
- DOE acidic nuclear waste solutions
- Noble Metal Separation
- Germanium Separation

SOL-AD-IV for Mercury Separations Compositions of Solutions

	Compositions (molar)			
Species	INEEL/DOE	EPA		
	SBW Solution	Scrubber Solution		
Al ³⁺	0.6	-		
Ca ²⁺	-	0.00873		
Cl⁻	-	0.03102		
F⁻	0.1	-		
K ⁺	0.18	-		
H*	2	pH 5		
Hg ²⁺	0.00758 (1500ppm)	2.5x10 ⁻⁶ (0.5ppm)		
Mg ²⁺	-	0.00206		
Na⁺	-	0.03104		
NH_4^+	-	0.01144		
NO ₃ ⁻	3.8	0.02158		
SO4 ²⁻	-	0.00572		
Zn ²⁺	-	0.00046		

- SOL-PzPs: Pyrazole Functionalized Adsorbent
- Extraction and Separation of Pd(II), Pt(IV), and Au(III) from 2.0 M HCl Solutions
 - Protonation of Functional Ligand $H^+ + \overline{R} \iff RH^+$
 - Adsorption of Chlorocomplexes $M^{X^-} + XRH^+ \Leftrightarrow \overline{M(HR)_X}$

 M^{X-} is $PdCl_4^{2-}$, $PtCl_6^{2-}$, and $AuCl_4^{--}$

- \overline{R} is Functional Ligand
- RH^+ is Protonated Ligand

SOL-PzPs-BD-5 in 2.0 M HCl

- Affinity order: Pd(II) >> Au(III) > Pt(IV)
- In practical conc. Range (<0.2 mmol/L):
 Complete Pd(II) separation

$$q_{PdCl_4^{2-}} = \frac{q_m K[PdCl_4^{2-}]}{1 + K[PdCl_4^{2-}]}$$

 $q_m = 1.284 \text{ mmol/g}$ K = 182 L/mmol

Adsorption Mechanism and Isotherm

Adsorption Mechanism (SOL-KELEX)

 $Ge(OH)_4 + 2\overline{HR} \leftrightarrow \overline{GeR_2(OH)_2} + 2H_2O$

$$q = \frac{4K_{eq}[Ge(OH)_4][\overline{HR}]_T^2}{(1 + \sqrt{1 + 8K_{eq}[Ge(OH)_4][\overline{HR}]_T})^2}$$

- ini Conc. = 1 ~ 1000ppm
- pHe = 2, 4, 6
- Adsorbent = 0.1 g
- Solution volume = 15 ml
- Batch Exp for 24hrs
- Buffer = 0.05M NaAc
- q_{max} = 21.5mg/g (0.33mmol/g)

K_{eq} (L/mmol²) = 2.65

Mass Transfer in Adsorption Processes

a. Fixed Beds

(C. Tien, Butterworth Heinemann, 1994. With permission)

b. Intrapellet mass transfer

Axial dispersion 1a 1b **Radial dispersion** 2 Interphase mass transfer 3 Intrapellet mass transfer Pore diffusion 3a 3b Surface diffusion 4 Adsorption 1а 3b (a) (b)

Kinetic Modeling of Adsorption

Case 1: Chemical Reaction Model: Kinetics of Surface Adsorption Controls. Hg adsorption on SOL-AD-IV (pH ≥ 5; acetate buffered chloride solution):

$$\overline{RSH} + HgAc_4^{2-} \bigoplus_{k_{-2}}^{k_2} \overline{RS} \cdot HgAc + H^+ + 3Ac^- \qquad K_{eq} = k_2 / k_{-2}$$
$$rate = -\frac{d[HgAc_4^{2-}]}{dt} = k_2[\overline{RSH}][HgAc_4^{2-}] - k_{-2}[\overline{RS} \cdot HgAc][H^+] \{Ac^-\}^3$$

Design Equation for Batch Differential Recycle Reactor:

$$-rate = \left(\frac{V_R + V_T}{V_R}\right) \frac{dC_T}{dt}$$

Solving above two equations (linear regression method of Levenberg-Marquardt)

$$C(t) = \frac{De^{Ak_2} - EB}{2B - 2e^{Ak_2}}$$

$$A, B, D, E = \text{constants} = f(C_{B0}, S_T, M, V, [H^+]. \{Ac^-\})$$
Solve for $k_2 : k_{-2}$ obtained from $K_{eq,2}$

Kinetic Modeling of Adsorption (continued

Case 2: Film-Pore Model: Solute Transport Through Film and Pore Adsorption Controls (Spherical Particle):

Macroscopic Balance for Batch Differential Reactor:

$$V(C_{b_{o}} - C_{b}) = M q$$

$$\overline{q} = \frac{3}{R_{p}^{3}} \int_{0}^{R} q r^{2} dr$$

$$q = [\overline{RS \cdot Hg \cdot Ac}] = \frac{S_{T} K_{eq2} [HgAc_{4}^{2^{-}}]}{[H^{+}] [Ac^{-}]^{3} \gamma_{Ac}^{3} + K_{eq2} [HgAc_{4}^{2^{-}}]}$$

Pore Diffusion Equation:

$$\varepsilon_{p} + \rho_{p} \frac{\partial q}{\partial c} \left[\frac{\partial c}{\partial t} = \frac{D_{p}}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial c}{\partial r} \right) \qquad \frac{\partial c}{\partial r} = 0, \qquad r = 0$$

$$D_{p} \frac{\partial c}{\partial r} = k_{f} (c_{b} - c), \qquad r = R$$

Kinetic Modeling of Adsorption (continued

Modeling Column Adsorption (Film-Pore Resistance Controls Adsorption) Column Mass Balance

$$u_{s} \frac{\partial c_{b}}{\partial z} + \varepsilon \frac{\partial c_{b}}{\partial \theta} + \rho_{b} \frac{\partial \overline{q}}{\partial \theta} = 0 \qquad \qquad c_{b} = 0, \qquad z \ge 0 \quad and \quad t \le 0$$
$$c_{b} = c_{b0}, \qquad z = 0 \quad and \quad t > 0$$

where

$$\rho_b = (1 - \varepsilon_b)\rho_p, \ \theta = t - z\varepsilon/u_s$$

Pore Diffusion Equation:

$$\begin{bmatrix} \varepsilon_{p} + \rho_{p} \frac{\partial q}{\partial c} \end{bmatrix} \frac{\partial c}{\partial t} = \frac{D_{p}}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial c}{\partial r} \right) \qquad \frac{\partial c}{\partial r} = 0, \qquad r = 0$$
$$D_{p} \frac{\partial c}{\partial r} = k_{f} (c_{b} - c), \qquad r = R$$

Solution of Case 2 BDRR Adsorption and Column Adsorption Equations

- Numerical Method
 - Method of Lines
 - Transform PDEs to set of ODEs
 - Solve the set of ODEs simultaneously

Parameter Estimation

D_M and τ are determined as fitting parameters

Adsorption Kinetics for Germanium

Breakthrough for Germanium

Loading Condition

- 0.5 g in 0.7 cm ID Column
- [Ge]_{in} = 51.3ppm
- pH_{in} = 6.11
- Flow rate = 0.86 mL/min
- Capacity = 0.21 mmol/g

Stripping Condition

- Strip Conc. = 1M HCl
- Flow rate = 1.08 mL/min
- Stripping Efficiency = 92%

Conclusions

- Examined methods to develop adsorbents through covalent attachment of ligands using sol-gel synthesis techniques.
- Described methods to characterize these adsorbents including ²⁹Si-NMR spectra; uptake capacity studies; BET measurement of pore diameters, porosity and surface area.
- Results show sol-gel adsorbents have metal selectivity, good physical/chemical stability, and capacities comparable to highest polymer resins.
- Three applications were shown for mercury removal, noble metal separations and germanium recovery from zinc leachate solutions. The results are promising.
- Mathematical modeling of batch adsorption was outlined to evaluate the rate determining steps of adsorption when either chemical reaction rate or film-pore diffusion controls.
- Mathematical modeling of fixed bed absorbers was outlined to evaluate breakthrough curves of adsorption columns for the specific separations and sol-gel adsorbents developed.
- The sol-gel systems have potential for application to nuclear fuel separations and the modeling approaches can be employed to design column and evaluate unit operation performance.

Notations

- c = metal concentration in the pore, mmol/L
- c_{b} = metal concentration in the bulk, mmol/L
- c_{bo} = initial metal concentration in the bulk, mmol/L
- c_s = metal concentration at the pellet surface, mmol/L
- c_T = total concentration of each metal, mmol/L
- D_p = pore diffusion coefficient, cm²/s
- D_M = molecular diffusion coefficient, cm²/s
- K_{eq} = equilibrium constant, L·g/mmol², L/mmol
- k_f = film coefficient, cm/s
- q = local concentration in the pellet, mmol of
- metal/g of adsorbent
- q = average concentration in the pellet, mmol
 of metal/g of adsorbent
- r = radial direction of the pellet, cm
- R_p = radius of pellet, cm
- q_{max} = max capacity of the adsorbent, mmol/g
- t = time, min
- u_s =superficial velocity, cm/s

- V = volume of solution, L
- V_R = volume of reactor, L
- V_T = volume of tank, L
- z = axial direction in the column, cm
- τ= particle tortuosity
- ε_{p} = pellet porosity
- $\varepsilon_{\rm b}$ = bed porosity
- $\rho_{\rm p}$ = pellet density, g/cm³
- $\rho_{\rm b}$ = bed density, g/cm³
- ρ_s = solid density of the adsorbent, g/cm³
- θ = corrected time in column calculations, t-zɛ/ u_s; min, s
- k_2 = forward reaction rate constant
- k_{-2} = reverse reaction rate constant
- M = weight of adsorbent, g
- γ = activity coefficient
- μ = liquid viscosity, cP

References

- 1. L. L. Tavlarides; Lee, J. S.; S. S. Gomez. New Materials in Solvent Extraction. In Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials (Ion Exchange and Solvent Extraction); Aguilar, M.; Cortina, J. L., Eds.; CRC Press, Florida, 2008; pp 225-260..
- 2. N.V. Deorkar; L. L. Tavlarides. Emerging Separation Technologies for Metals II, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, USA, 1996, pp 107 – 118.
- 3. J.S. Lee; S. Gomez-Salazar, L.L. Tavlarides. Reactive and Functional Polymers 49:159-172, 2001
- 4. Rovira; J. L. Crotina; J. Arnaldos; A. M. Sastre. Impregnated Resins Containing Di-(2-ethylhexyl) Thiophosphoric Acid for the Extraction of Palladium (II). II. Selective Palladium (II) Recovery from Hydrochloric Acid Solutions, Solvent Extraction and Ion Exchange, 1999, 17, 351-366.
- 5. M. Iglesias; E. Antico; V. Salvado. Recovery of Palladium (II) and Gold (III) from Dilute Liquors using the Resin Duolite GT-73, Analytica Chimica Acta, 1999, 381, 67-67.
- 6. A. Sugii; N.. Ogawa; H. Hashizume. Preparation and Properties of Macroreticular Resins Containing Thiazole and Thiazoline Groups, Talanta, 1980, 27, 627-631.
- 7. X. Feng; G. E. Fryxell; L. Q. Wang; A. Y. Kim; J. Liu; K. M. Kemner. Functionalized Monolayers on Ordered Mesoporous Supports, Science, 1997, 276,923-926.

References (continued)

- 8. J. P. Marco; D. Cazorla; S. A. Linares. A New Strategy for Germanium Adsorption on Activated Carbon by Complex Formation. Carbon. 2007, 45(13), 2519-2528.
- 9.Y. Inukai; Y. Tanaka; Y. Shiraishi; T. Matsuda;, N. Mihara;, K. Yamada; N. Nambu; O. Itho; T. Doi;, Y. Kaida; S. Yasuda. Selective Separation of Germanium (IV) by Di-(2-hydroxyethyl) Amine-Type Cellulose Derivative. Analytical Sciences. 2001, 1, 1117-1120.
- 10. O. S. Pokrovsky; G.S. Pokrovski; J. Schott; A. Galy. Experimental Study of Germanium Adsorption on Goethite and Germanium Coprecipitation with Iron Hydroxide: X-ray Absorption Fine Structure and Macroscopic Characterization. Geochimica et Cosmochimica Acta. 2006, 70, 3325.3341
- 11. N. V. Deorkar and L. L. Tavlarides, Zinc, Cadmium, and Lead Separation from Aqueous Streams Using Solid-Phase Extractants, Ind. Eng. Chem. Res., 1997, 36, 399-406
- 12. A. Deratani and B. Sebille. Metal Ion Extraction with a Thiol Hydrophilic Resin, Analytical Chemistry, 1981, 53, 1742-1746
- 13. Nam, K. H.; Gomez-Salazar, S.; Tavlarides, L. L. Mercury(II) Adsorption from Wastewaters Using a Thiol Functional Adsorbent, Ind. Eng. Chem. Res. 2003, 42(9), 1955-1964.
- 14. J. S. Lee and L. L. Tavlarides, Pyrazole Functionalized Organo-Ceramic Hybrids for Noble Metal Separations, AIChE, 2005, 51, 2702-2711.
- 15. C. Tien. Adsorption Calculations and Modeling, Butterworth-Heinemann Series in Chemical Engineering, Butterworth Heinemann, Boston, USA, 1994
- **16.** J. S. Lee, MS Thesis, Syracuse University, Syracuse, NY 1997