Introduction to Nuclear Fuel Cycle Separations

Terry Todd

CRESP Short Course -Introduction to Nuclear Fuel Cycle Chemistry

Crystal City, VA

August 4, 2009

Why separate components of spent fuel?

- Recover useful constituents of fuel for reuse
 - Weapons (Pu)
 - Energy
 - Recycle
- Waste management
 - Condition fuel for optimized disposal
 - Recover long-lived radioactive elements for transmutation

Spent (used) Nuclear Fuel – what is it?

Most heat production is from Cs and Sr, which decay in ~300 yr Most radiotoxicity is in long-lived fission products and the minor actinides, which can be transmuted and/or disposed in much smaller packages

Only about 5% of the energy value of the fuel is used in a once-through fuel cycle!

Idaho National Laboratory

Aqueous processing - History

• Began during Manhattan Project to recover Pu-239

- Seaborg first separated microgram quantities of Pu in 1942 using bismuth-phosphate precipitation process
- Process scaled to kilogram quantity production at Hanford in 1944

• A scale-up factor of 10⁹!!!

- Solvent extraction processes followed to allow concurrent separation and recovery of both U and Pu and
- Reprocessing transitioned from defense to commercial use
 - Focus on recycle of uranium and plutonium
 - Waste management

Hanford T-Plant 1944

20 micrograms of plutonium hydroxide 1942

Bismuth Phosphate Process

- Advantages of Bismuth Phosphate Process
 - Recovery of >95% of Pu
 - Decontamination factors from fission products of 10⁷
- Disadvantages of Bismuth Phosphate Process
 - Batch operations
 - Inability to recovery uranium
 - Required numerous cycles and chemicals
 - Produced large volumes of high-level waste

REDOX Process

- First solvent extraction process used in reprocessing
 - Continuous process
 - Recovers both U and Pu with high yield and high decontamination factors from fission products
- Developed at Argonne National Laboratory
- Tested in pilot plant at Oak Ridge Nat. Lab 1948-49
- **REDOX** plant built in Hanford in 1951
- Used at Idaho for highly enriched uranium recovery

Hanford REDOX -Plant (1951)

REDOX Process

- Hexone (methyl isobutyl ketone) used as the extractant
 - Immiscible with water

daho National Laboratory

- Used to purify uranium ore concentrates
- Extracts both uranyl and plutonyl nitrates selectively from fission products
- Plutonium oxidized to Pu (VI) for highest recovery
- U (VI) and Pu (VI) co-extracted, then Pu is reduced to Pu (III) by ferrous sulfamate and scrubbed from the solvent
- Hexone is highly flammable and volatile
- Large amounts of nonvolatile salt reagents added to process increased waste volume

BUTEX Process

- Developed in late 1940's by British scientists at Chalk River Laboratory
- Utilized dibutyl carbitol as solvent
 - Lower vapor pressure than hexone
- Nitric acid was used as salting agent
 - Replaced need to use aluminum nitrate as in REDOX process
 - Lower waste volumes
- Industrial operation at Windscale plant in UK until 1976

PUREX Process

- Tributyl phosphate used as the extractant in a hydrocarbon diluent (dodecane or kerosene)
 - Suggested by Warf in 1949 for the recovery of Ce (IV) from rare earth nitrates
 - Developed by Knolls Atomic Power Lab. and tested at Oak Ridge in 1950-1952
 - Used for Pu production plant at Savannah River in 1954 (F-canyon) (H-canyon facility begin operation in 1955 and is still operational in 2008)
 - Replaced REDOX process at Hanford in 1956
 - Modified PUREX used in Idaho beginning in 1953 (first cycle)

Basics of aqueous separation process chemistry

- The PUREX process will be used to describe the basics on how solvent extraction is used to separate U and Pu from dissolved fuel
 - Principles are similar for many other solvent extraction processes (e.g. separation of fission products or TRU) which use other extractants
 - Some exceptions (CCD and CSEX)

Early actinides have multiple oxidation states available in aqueous solution. The PUREX process makes use of this to separate U and Pu from fission products

The multiple oxidation states of plutonium

- The PUREX solvent is typically 30 vol% TBP in a hydrocarbon diluent (dodecane or kerosene)
- The extracting power of TBP is derived mainly from its phosphoryl oxygen atom coordinating to metal ions:
- TBP is classed as a neutral extractant *i.e.* it will only extract electroneutral complexes into the organic phase e.g.

ho National Laboratory

P=0 -----

$An^{4+} + 4NO_3^{-} + 2TBP \implies An(NO_3)_4 \bullet 2TBP$

•As a general rule only metal ions in the +4 and +6 oxidation states are extracted, this means that all other species present are rejected

$$An^{4+} + 4 NO_3^- + 2TBP \implies An(NO_3)_4(TBP)_2$$
$$AnO_2^{2+} + 2NO_3^- + 2TBP \implies AnO_2(NO_3)_2(TBP)_2$$

•This leads to an effective separation of U and Pu away from nearly all other species in dissolved nuclear fuel

Strong extraction (D>>0.5)	Weak extraction (D<<0.5)
$UO_2^{2+} > U^{4+}$	
$NpO_2^{2+} > Np^{4+}$	NpO_2^+
$PuO_2^{2+} < Pu^{4+}$	Pu ³⁺
TcO_4^{-}/UO_2^{2+} , /Pu ⁴⁺ or Zr	All other species

PUREX process- Basic principles

 $UO_2^{2+} + 2NO_3^{-} + 2TBP \leftrightarrows UO_2(NO_3)_2 \bullet 2TBP$

 $Pu^{4+} + 4NO_3^- + 2TBP - Pu(NO_3)_4 \bullet 2TBP$

Kaho National Laboratory

Representation of the extracted UO₂²⁺ complex with TBP

PUREX process – Basic Principals

 The amount of metal extracted is quantified by the analytical concentration of M in the organic phase to its analytical concentration in the aqueous phase at equilibrium. This is more commonly known as the distribution coefficient:

$$\mathbf{D}_{\mathrm{m}} = \frac{\left[\mathbf{M}(\mathbf{NO}_{3})_{x} \bullet nTBP\right]_{org}}{\left[M^{\mathrm{x}+}\right]} = \mathbf{K}_{1}\left[\mathbf{NO}_{3}^{-}\right]_{aq}^{x}\left[\mathrm{TBP}\right]_{org}^{n}$$

Nitric acid dependency

 $UO_2^{2+} + 2NO_3^- + 2TBP - UO_2(NO3)_2 \bullet 2TBP$

 $Pu^{4+} + 4NO_3 + 2TBP \implies Pu(NO_3)_4 \bullet 2TBP$

PUREX Process – Basic Principals

•U, Np and Pu TBP extraction data plotted against each other, from this it can be seen that extractability (D) of the hexavalent actinides decreases across the series $UO_2^{2+}>NpO_2^{2+}>PuO_2^{2+}$. Conversely, the extractability (D) of the tetravalent actinides is seen to increase across the series $U^{4+}<Np^{4+}<Pu^{4+}$.

PUREX Process – Basic Principals

 To remove Pu from the organic phase Pu⁴⁺ is reduced to inextractable Pu³⁺ using a reducing agent, usually Fe²⁺ or U⁴⁺

 $U^{4+} + 2Pu^{4+} + 2H_2O \longrightarrow UO_2^{2+} + 2Pu^{3+} + 4H^+$

- This preferred process leaves UO₂²⁺ unaffected and because U⁴⁺ is also extractable, then Pu can be selectively back extracted.
- However, Pu³⁺ can be unstable in HNO₃ solutions because of the presence of nitrous acid, and thus hydrazine is added as a nitrous acid scavenger

$$2HNO_2 + N_2H_4 \implies N_2 + N_2O + 3H_2O$$

Example of Process Flowsheet Design

PUREX Process – unit operations

Separations

Countercurrent PUREX flowsheet (1st cycle or HA cycle)

THORP Reprocessing Flowsheet

Commercial spent fuel reprocessing in the US (PUREX process)

- West Valley, NY
 - First plant in US to reprocess commercial SNF
 - Operated from 1966 until 1972
 - Capacity of 250-300 MTHM/yr
 - Shutdown due to high retrofit costs associated with changing safety and environmental regulations and construction of larger Barnwell facility
- Morris, IL
 - Construction halted in 1972, never operated
 - Close-coupled unit operations with fluoride volatility polishing step (dry U feed)
- Barnwell, SC
 - 1500 MTHM capacity
 - Construction nearly completed- startup testing was in progress
 - 1977 change in US policy on reprocessing stopped construction
 - Plant never operated with spent nuclear fuel

Commercial-scale application of the PUREX process abroad

• France

- Magnox plant in Marcoule began operation in 1958 (~400 MT/yr)
- Magnox plant in La Hague began operation in 1967 (~400 MT/yr)
- LWR oxide plant (UP2) began in La Hague in 1976 (800 MT/yr)
- LWR oxide plant (UP3) began in La Hague in 1990 (800 MT/yr)
- United Kingdom
 - Windscale plant for Magnox fuel began in 1964 (1200-1500 MT/yr)
 - THORP LWR oxide plant began in 1994 (1000-1200 MT/yr)
- Japan
 - Tokai-Mura plant began in 1975 (~200 MT/yr)
 - Rokkasho plant currently undergoing hot commissioning (800 MT/yr)
- Russia
 - Plant RT-1
 - Began operation in 1976, 400 MT capacity
 - Variety of headend processes for LWR, naval fuel, fast reactor fuel

PUREX Process – Current Commercial Operating Facilities

THORP, UK

La Hague, France

PUREX Process – advantages and disadvantages

• Advantages

- Continuous operation/ High throughput
- High purity and selectivity possible can be tuned by flowsheet
- Recycle solvent, minimizing waste

Disadvantages

- Solvent degradation due to hydrolysis and radiolysis
- Dilute process, requires substantial tankage and reagents
- Historical handling of high-level waste
- Stockpiles of plutonium oxide

Electrochemical Processing Background

- Present generation of technology for recycling or treating spent fuel started in the 1980s
- Electrochemical processes were developed for the fast reactor fuel cycle
 - The fast reactor fuel does not require a high degree of decontamination
 - Potential compactness (co-location with reactor)
 - Resistance to radiation effects (shortcooled fuel can be processed)
 - Criticality control benefits
 - Compatibility with advanced (metal) fuel type

Example of an electrochemical flowsheet (LWR or FR fuel to FR fuel)

Idaho National Laboratory

Electrochemical Treatment of Spent Fuel

- Electrochemical processing has been performed on the engineering-scale with irradiated fuel since 1996
- Approximately 3.5 MTHM of fuel, including highly enriched uranium fuels, have been treated
- Installed process equipment could support throughputs between 3 and 5 MTHM per year
- Advancements in the technology are a major focus of GNEP

Spent Fuel Constituents are Partitioned According to Free Energy of Formation of Chlorides at 500°C

Schematic of Electrorefining Process to Treat Spent Fuel

AFCI Electrochemical processing R&D focus

- Electrorefining
 - Fundamental electrochemistry and thermodynamics
 - Advanced TRU recovery
- Cathode processing for U/TRU recovery
- Salt treatment for recycle
- Process monitoring and control
- Process modeling and simulation

What about proliferation?

- Proliferation of fissile material (i.e. Pu) has been raised as a concern for several decades
- UREX and pyrochemical technologies were proposed as "proliferation resistant" technologies because Pu could be kept with other TRU or radioactive fuel components
 - Critics do not accept this argument
 - Pyroprocessing now called "reprocessing" rather than "conditioning" by NA-24
 - This has export control ramifications
- NA-24 is now basing "proliferation resistance" on Attractiveness Level
 - This opens the door to leave U with Pu to dilute it to a lower attractiveness level
 - This is a change from previous policy, that isotopic dilution was necessary (i.e. U-233 or 235)
- No technology by itself is intrinsically proliferation proof
- Technology is one aspect of a multifaceted approach that is necessary to protect fissile material (with safeguards, security, transparency, etc)

Where are we today?

- Solvent extraction is a mature technology used at commercial scale to reprocess spent nuclear fuel
- Many new extractant molecules have been developed, but not demonstrated at large scale
- High throughput, high separation factors are achievable
- Electrochemical methods have been demonstrated for U recovery at engineering-scale
- TRU recovery and salt recycle have not been demonstrated at engineering-scale

Where are going?

- Research into advanced separation methods as part of the Advanced Fuel Cycle program in progress
 - New Aqueous methods
 - Electrochemical methods
 - Transformational methods
- Integration of separation R&D efforts with waste form and fuel fabrication is essential
 - No more "throw it over the fence approach"

