

We Put Science To Work

Ion Exchange and Adsorption Processes

David T. Hobbs

Introduction to Nuclear Chemistry and Fuel Cycle Separations

SRNL-STI-2009-00461

Topics

- Fundamentals
- Historical Perspectives
- Types of Ion Exchangers
- Industrial Applications
- Nuclear Fuel Cycle Applications
- Conclusions

Adsorption

- Adhesion of a gas, liquid or dissolved substance to a surface
- Commercial applications
 - Bulk gas separations/purification: N₂/O₂, paraffins, isoparaffins, aromatics, CO, CH₄, CO₂, NH₃/H₂
 - Bulk liquid separations/purification: paraffins, isoparaffins, aromatics, fructose/glucose
- Major classes of sorbents
 - Molecular-sieve zeolites
 - Activated alumina
 - Silica gel
 - Activated carbon

Ion Exchange

- Chemical process whereby ions are reversibly transferred between an insoluble solid and a fluid
- Cation Exchange: $S-H_{(s)} + Na^+_{(aq)} = S-Na_{(s)} + H^+_{(aq)}$
- Anion Exchange: $S-CI_{(s)} + NO_3^{-}_{(aq)} = S-NO_{3(s)} + CI_{(aq)}^{-}$
- Selectivity is function of ion valence & size, ionic form of resin, ionic strength of solution, type of functional group, nature of non-exchanging groups

Historical Perspectives – Ion Exchange

- Natural phenomena that occurs in soil, minerals and tissues of plants and animals
- Thompson and Way (1850) first described process in soils
- Eichorn (1858) demonstrated that process in reversible
- Gans (1905) developed first practical ion exchange process for softening water using sodium aluminates
- Adams and Holms (1935) developed first polymer derived ion exchangers

Historical Perspectives

- D'Alelio (1944) developed materials based on styrene divinylbenzene matrix
- Juda and McRae (1950) developed ion exchange products in form of membranes
- Grot (1970) develops Nafion[®] ion exchange membrane
 - chlor-alkali electrolyzers
 - PEM fuel cells

Historical Perspectives

- Lynch, Dosch, Kenna, Johnstone and Nowak (1975) report ion exchange behavior of titanates and zirconates
 - SRS uses monosodium titanate for Sr/actinide removal (1995)
- Dosch and Anthony (1992) report high affinity of crystalline silicotitanates (CST) for cesium under strongly alkaline conditions
- Bibler and Wallace (1995) patent resorcinol formaldehyde (RF) resin for cesium removal
- Tarbet, Maas, Krakowski and Bruening patent hydroxyarylene resin (SuperLiq[®] 644) for cesium removal

Types of Ion Exchangers - Organic

Polymer backbone

Anion exchange

SO₃H

Cation exchange

Gel ion exchange resins are translucent and are a homogeneous continuous phase throughout the bead. The pore structure of gel resins depends on the degree of crosslinking.

Macroporous resins are opaque due to the fact that they contain up to 20% DVB in the polymer matrix. They are produced from a styrene-divinylbenzene copolymer to which has been added a nonpolymerizable diluent that volatilizes leaving discrete macro pores throughout the bead.

Y. Yu, et. al, J. Chromatog. A, 1999 985, 129-136.

Types of Ion Exchangers - Inorganic

- Silicates
 - Aluminum silicates (zeolites)
 - Titanium silicates
- Hexacyanoferrates
 - $K_2MFe(CN)_6$, where M = Ni, Co, Cu
- Hydrous metal oxides
 - Sodium titanates & zirconates
 - Pentavalent metal oxides (Sb, Ta, Nb)
 - Mixed metal oxides (A₂B₂O₇)
- Metal phosphates (Zr, Ca, Mo)
- Group(IV) Acid Salts (Ti, Hf, Ge, Sn)

Туре А

Туре В

UOP molecular sieve products

Physical & Chemical Properties

Physical properties

- density
- resistance to osmotic shock
- diffusion
- relative porosity
- Chemical properties
 - hydration
 - ionization
 - selectivity

Industrial Applications – Water Treatment

- Cation Exchange
 - sodium cycle softening
 - hydrogen cycle dealkylization
- Anion Exchange
- Deionization
- Electric Power Generation
- Recovery of valuable metals
- Removal of toxic metals

Sodium Cycle - Softening

- Remove calcium & magnesium from natural water supplies
- Materials: zeolites, synthetic aluminosilicates & high-capacity polymer resins

Loading:

 $CaCO_3 + 2R-Na = R_2-Ca + Na_2CO_3$ MgSO₄ + 2R-Na = R₂-Mg + Na₂SO₄

Regeneration:

 $2\text{NaCl} + \text{R}_2\text{-Ca} = 2\text{R}\text{-Na} + \text{CaCl}_2$ $2\text{NaCl} + \text{R}_2\text{-Mg} = 2\text{R}\text{-Na} + \text{MgCl}_2$

Hydrogen Cycle - Dealkalization

- Removal of alkalinity from water supplies
- Materials: weak carboxylic acid (R-COOH) resins

Loading: $CaCO_3 + 2R-COOH = (R-COO)_2Ca + Na_2CO_3$ $NaHCO_3 + R-COOH = R-COONa + H_2CO_3$ Regeneration: $(R-COO)_2Ca + H_2SO_4 = 2R-COOH + CaSO_4$ $(R-COONa + H_2SO_4 = 2R-COOH + Na_2SO_4$

Anion Exchange

- Remove toxic anions from water supplies
- Ion exchange materials: strong base anion exchangers

Loading: $R-CI + NO_{3}^{-} = R-NO_{3} + CI^{-}$ $R-CI + NO_{2}^{-} = R-NO_{2} + CI^{-}$ $2R-CI + SO_{4}^{2-} = 2R-SO_{4} + 2CI^{-}$

Deionization

- Remove all ions from water supplies
- Ion exchange materials: strong acid cation exchangers in series with weak base anion exchanger or strong base anion exchanger in the hydroxyl form

Loading:

 $R-SO_{3}H + MX = R-SO_{3}M + HX$ $R-N(CH_{3})_{2} + HX = R-N(CH_{3})_{2}HX$ $R-N(CH_{3})_{3}OH + HX = R-N(CH_{3})_{2}X + H_{2}O$

Electric Power Generation

- Remove dissolved solids in water fed to produce ultrapure water
 - supercritical boiler (fossil fuel)
 - pressurized water reactors
 - boiling water reactors
 - spent fuel cooling basins
- Mixed bed ion exchange systems in NH₄ /OH or Li/OH form

Metals Recovery/Removal

hydrogen 1	_	Periodic Table of the Elements													^{helium} 2 He			
1.0079 lithium 3	⁴ Be												5 B	earbon 6 C	nitrogen 7 N	oxygen 8 O	fluorine 9 F	4.0026 neon 10 Ne
6.941 sodium 11 Na	9.0122 magnesium 12 Mg											10.811 aluminium 13 Al	12.011 silicon 14 Si	14.007 phosphorus 15 P	15.999 sulfur 16 S	18.998 chlorine 17 Cl	20.180 argon 18 Ar	
22.990 potassium 19	24.305 calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	1ron 26	cobalt 27	nickel 28	copper 29	zinc 30	26.982 gallium 31	28.086 germanium 32	30.974 arsenic 33	32.065 selenium 34	35.453 bromine 35	39.948 krypton 36
89.098 rubidium 37	Ca 40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	Fe 55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63.546 silver 47	Zn 65.39 cadmium 48	69.723 indium 49	Ge 72.61	AS 74.922 antimony 51	Se 78.96 tellurium 52	79.904 iodine 53	83.80 xenon 54
Rb 85.468 caesium	Sr 87.62 barium		X 88.906 Iutetium	Zr 91.224 hafnium	Nb 92.906 tantalum	Mo 95.94 tungsten	Tc [98] rhenium	Ru 101.07 osmium	Rh 102.91 iridium	Pd 106.42 platinum	Ag 107.87 gold	Cd 112.41 mercury	In 114.82 thallium	Sn 118.71 lead	Sb 121.76 bismuth	Te 127.60 polonium	126.90 astatine	Xe 131.29 radon
55 CS 132.91	56 Ba 137.33	57-70 ★	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222]
francium 87 Fr [223]	88 Ra	89-102 ★ ★	lawrencium 103 Lr [262]	rutherfordium 104 Rf [261]	dubnium 105 Db [262]	106 Sg [266]	107 Bh [264]	108 HS [269]	109 Mt [268]	110 Uun [271]	111 Uuu [272]	112 Uub [277]		114 Uuq [289]				

*Lanthanide series	Ianthanum 57 La	58 Ce	praseodymium 59 Pr	^{neodymium} 60 Nd	^{promethium} 61 Pm	62 Sm	europium 63 Eu	^{gadolinium} 64 Gd	65 Tb	dysprosium 66 Dy	67 HO	^{erbium} 68 Er	69 Tm	ytterbium 70 Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
**Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Biotechnology Applications

- Decolorization of sugar
- Purification of amino acids (cation resins)
- Purification of proteins (cation resins)
- Purification of antibiotics
 - streptomycin (carboxylic acid resins)
 - cephalosporin (medium base anion resin)
 - erythromycin (cation resin)

Nuclear Materials Production

- Dilute Pu(III) solution from PUREX process purified and concentrated using cation exchange resin
- Polystyrene-divinylbenzene sulfonic acid (RSO₃H)

Purification of Pu and Np

- Load $Pu(NO_3)_6^{2-}$ or $Np(NO_3)_6^{2-}$ from 8 M HNO₃ onto strong anion exchange resin
- Wash with 6-8 M HNO₃ to remove fission products and impurities
- Elute Pu with 0.3 M HNO₃

Reillex HPQ anion exchange resin

Ion Exchange Resin Safety

Nitric Acid will oxidize organic resins generating gas and heat

Inadequately vented columns will over pressurize and rupture explosively

Safety Precautions:

- Keep resin wet at all times
- Keep the temperature of the resin below 60 °C
- Keep the ion exchange column vented at all times
- Keep the resin radiation exposure level to $< 10^8$ RAD
- Limit Resin Exposure to no more than 9 M HNO₃
- Limit Resin Exposure to Oxidizers

Cesium Separation from Purex Raffinate

- Purex raffinate concentrated and partially denitrated, made alkaline with NaOH and NH₃, filtered to remove precipitated solids, and filtrate acidified to pH 4 and boiled to remove CO₂
- Ni(II) and ferricyanide added to precipitate Ni₂Fe(CN)₆
- $Ni_2Fe(CN)_6 + 2Cs^+ = Cs_2NiFe(CN)_6$
- Add Ag₂CO₃ to metathesize Cs and produce Cs₂CO₃
- >99% recovery
- Process recovered 30,000 Ci ¹³⁷Cs at Hanford

- Cs separation from alkaline waste solutions
- Spherical resorcinol formaldehyde (Microbeads AS)

- Cs separation from alkaline waste solutions
- SuperLiq[®] 644 Resin (IBC Advanced Technologies, Inc.)
- 1. Resin received in H-form
- 2. Convert to Na-form (1M NaOH)
- 3. Bed conditioning (H₂O, 0.5M HNO₃, H₂O, 0.25M NaOH
- 4. Bed loading (waste solution)
- 5. Feed displacement (0.1M NaOH)
- 6. Elution (0.5M HNO₃)
- 7. Eluant rinse (DI H₂O)
- 8. Regeneration (0.25M NaOH)

- Crystalline silicotitanate, Na₂Ti₂O₃(SiO₄)·2H₂O (CST)
- Effective for removing Cs and Sr from alkaline waste solutions
- Partial substitution of Nb for Ti in framework increases selectivity for Cs and decreases selectivity for Sr
- Effectively non-elutable due to phase change between Cs and H-forms

- pure CS1

Nb-CST

 Commercially available: UOP IE-910 (powder) and IE-911 (engineered)

1.00

2.00

3.00

C Na⁺, mol/l

4.00

5.00

1.2

1.0

0.8

0.6

0.4

0.2

Uptake of Cs⁺, meq/g

- Titanosilicate, M₄(TiO)₄(SiO₄)₃•xH₂O (TSP) where M = Cs, K, H
- Isostructural to the mineral pharmacosiderite
- H-form exchanges Cs⁺ > K⁺ > Na⁺ > Li ⁺ Ba²⁺ > Sr²⁺ > Ca²⁺ > Mg²⁺
- Na & K-forms exhibit affinity actinides

26

- Monosodium titanate, NaHTi₂O₅ (MST)
- Layered amorphous material exhibits high affinity for Sr & actinides over wide range of pH conditions
 - Highly effective in strongly alkaline (>1M free OH⁻) and high ionic strength Na solutions (>4.5M in Na)
- Used at SRS Actinide Removal Process (ARP) and Salt Waste Processing Facility (SWPF)
 - Batch contact process with fine powder
 - Separate solids using ultrafiltration (0.1-micron membrane)

SEM image

TEM image

Conclusions

- Ion exchange processes are a strong commercial market
 - water treatment
 - biotechnology
- Organic-based ion exchange materials dominate the commercial market
- Ion exchange materials successfully used in fuel cycle separations and cleanup of legacy wastes
 - purification of Pu, Np and U
 - separation of fission products and actinides from alkaline wastes

A. Clearfield, Inorganic Ion Exchange Materials, CRC Press, Boca Raton, 1981.

R. W. Rousseau, Ed., *Handbook of Separation Process Technology*, Wiley-Interscience, New York, 1987.

G. P. Simon, *Ion Exchange Training Manual*, Van Nostrand Reinhold, New York, 1991.

A. Dyer, M.J. Hudson, P.A. Williams, *Progress in Ion Exchange Advances and Applications*, Royal Society of Chemistry, Cambridge, 1997.

P.A. Williams and A. Dyer, Advances in Ion Exchange for Industry and Research, Royal Society of Chemistry, Cambridge, 1997.

A. Zagorodni, *Ion Exchange Materials: Properties and Applications*, Royal Institute of Stockholm, 2006.

S. D. Alexandratos, "Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research", *Ind. Eng. Chem. Res.* 2009, 48, 388-398.

