

# Assessing Engineered Systems in Geologic Repositories: WIPP

Presented at the Performance Assessment Community of Practice Workshop Salt Lake City Utah July 13-14, 2009

> Frank Hansen, PhD. Sandia National Laboratories Albuquerque New Mexico



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



#### **WIPP: A Solution of a National Problem**







## Waste Isolation Pilot Plant Chronology 1975-2009







#### **WIPP Underground Layout**





# Bedded Salt Was Chosen for the Siting of the US Defense Nuclear Wastes

- Salt can be mined easily
- Salt has a relatively high thermal conductivity
- Wide geographic distribution (many potential sites)
- Salt is plastic \*
- Salt is essentially impermeable \*
- Fractures in salt are self healing \*
- Salt has existed underground for millions of years \*

\* Attributes of Natural Barrier





#### **Assessing Engineered Barriers**

EPA defines barriers as "any material or structure that prevents or substantially delays movement of water or radionuclides toward the accessible environment"

- 1. Salt the Most Important Barrier
- 2. Shaft Sealing System
- 3. Panel Closure System
- 4. Magnesium Oxide Engineered Barrier
- 5. Materials Interaction

Discussion will reverse the order





#### Waste Package Performance

- HLW waste package material
- Materials Interface Interaction Tests
- Simulated RH and CH TRU corrosion/durability
- BAMBUS II
- Potash Basin Experience (1930's)









#### WIPP Room Evolution at Time=0 years





#### WIPP Room Evolution at Time=12 years





#### **WIPP Room Evolution at 1000 years**







## **Waste Package Interactions**







## **MgO Engineered Barrier**

- MgO will act as an engineered barrier in the WIPP by decreasing actinide solubilities.
- Control  $P_{CO2}$  and pH within favorable ranges.
- Only engineered barrier recognized by EPA.
- Ongoing lab studies imply MgO will effectively remove H<sub>2</sub>O and CO<sub>2</sub>.







| Undisturbed halite        |                   |             |                      |            |
|---------------------------|-------------------|-------------|----------------------|------------|
| Anhydrite layers          |                   |             |                      |            |
| Disturbed rock zone (DRZ) |                   |             |                      |            |
| Healed DRZ                |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      |            |
|                           |                   |             |                      | \          |
|                           | Explosion         | On an Drift | Concrete             |            |
| Waste Panel               | Explosion<br>Wall | Open Drift  | Concrete<br>Monolith | Open Drift |
| Waste Panel               | Explosion<br>Wall | Open Drift  | Concrete<br>Monolith | Open Drift |
| Waste Panel               | Explosion<br>Wall | Open Drift  | Concrete<br>Monolith | Open Drift |
| Waste Panel               | Explosion<br>Wall | Open Drift  | Concrete<br>Monolith | Open Drift |
| Waste Panel               | Explosion<br>Wall | Open Drift  | Concrete<br>Monolith | Open Drift |



#### **Proposed Panel Closure System**





## **Shaft Seal System Design Guidance**

- Limit hazardous constituents reaching regulatory boundaries
- Restrict groundwater flow through the sealing system
- Use materials possessing mechanical and chemical compatibility
- Protect against structural failure of system components
- Limit subsidence and prevent accidental entry
- Utilize available construction methods and materials





#### **Shaft Sealing System**



Sandia

National

aboratories



## **Shaft Seal System Conclusions**

- The WIPP shaft seal system effectively limits fluid flow within the seal system.
- The salt column becomes an effective barrier to gas and brine migration by 100 years after closure.
- Long-term flow rates within the seal system are limited.





## Natural Barrier – It's the salt

Salt formations are used for disposal at WIPP.

Germany has several disposal facilities for toxic and radioactive waste in salt:

- Herfe-Neurode
- Morsleben
- Asse

Salt is an attractive disposal medium. Additional heat from the disposed waste can accelerate encapsulation. Salt provides a viable disposal option for heatgenerating nuclear material, such as fission products resulting from recycling fuel rods













#### Disturbed Rock Zone around a Disposal Room





## **Thermomechanical Response of Salt**

- Thermal activation will increase creep of the salt
- Plastic creep deformation would enhance room closure and encapsulation
- WIPP's original mission included defense HLW and spent fuel
- Thus, there is a considerable amount of information on heat-generating waste in a salt repository



#### **Temperature Effect on Salt Deformation**







#### **Major Tests in the WIPP**







Room H







•"A" Rooms

#### ALL SHALL SALES TO SHALL SHA 4.3 1 55.1 93.3 4.3 m ROOM A1 ROOM A2 ROOM A3 NOT TO SCALE • 0.47-kW CANISTER HEATER O 1.41-kW GUARD HEATER © DHLW TEST PACKAGE OHLW TE 18W/m<sup>2</sup> MOCKUP ROOM A-2



#### **Measured vs. Predicted Room Closure**







## Summary – It's the salt

- The concept of disposal of heat generating nuclear waste in salt has been considered viable for many years
- Thermal acceleration of plastic creep deformation can positively affect encapsulation
- A significant number of full-scale field demonstrations of heater tests in salt have been completed
- Salt remains an attractive medium for disposal of nuclear waste





## ReCap

- Several barriers engineered for WIPP
- No performance credit for waste package
- MgO engineered barrier (assurance)
- Panel closure performance implication
- Shaft seal system
- It's the salt

Next: Salt thermal studies indicate balance of local and far field heat provides considerable volume for disposal of large volumes of other possible inventories (GTCC).

