Risk Analysis for Truck Transportation of High Consequence Cargo

Bob Waters
Sandia National Laboratories

Workshop on Risk Assessment and Safety Decision Making under Uncertainty

September 21-22, 2010
Comparing fixed facilities to transportation

The “chicken ranch” controls everything they can to drive down risk
 – Control environment, work processes, work pace, and workers

The “egg haulers” drive the State and US highways with high kinetic energy and less-controllable risks
 – Other drivers (beginners, impaired, distracted, etc.)
 – Other vehicles (tankers, hazmat, super-heavies)
 – Road environments (bridges/tunnels/abutments/construction)
 – Degraded weather

Lots of uncertainty in the type of transportation accidents to plan for
Begin with the End in Mind
Keep cargo safe during credible worst-case accidents

What is credible?
- Depends on the person
- Often use a low likelihood of occurrence
 - $10^{-6}/\text{yr}$ – commonly assumed
 - Called Design Basis Accidents (DBA)

What is safe?
- Demonstrated safe environments through testing and analysis

How to “keep cargo safe”
- Controls mitigate accidents environments to demonstrated safe cargo environments
 - Tractor and trailer, cargo restraints, operations
What kinds of insults are a concern?
- Mechanical – crash breaks eggs
- Thermal – fire cooks eggs
- Electrical – energy “fries” eggs
- Combined environments – cause broken, scrambled, fried eggs!
- …

Let’s focus on mechanical insults
- Pay attention to assumptions, extensions, limitations in the details
- Pay attention to narrowing of focus as we focus in on quantitative solutions
Dealing with the reality of limited data

“Egg haulers” have too few accidents & miles for meaningful statistics
⇒ Assume we’re no worse than the industry average and use national databases
⇒ Determine the accident-per-mile rate

No national accident databases exist for high-energy crashes, but trucks involved in fatal accidents (TIFA) are tracked
⇒ Assume TIFA accidents encompass high-energy accidents
⇒ Identify the most severe TIFA accidents for investigation

Details of severe accidents are buried in police accident reports
⇒ Analyze the ~1500 worst TIFA accidents to infer worst environments

Organize TIFA accidents into analyzable groups
⇒ Bin accidents into cardinal impact directions
⇒ Determine equivalent insult to egg truck
Unifying metric for analyzing crashes

Peak Contact Velocity (PCV) in MPH is the maximum change in velocity that would be experienced by the cargo due to an accident.
- Based on conservation of momentum
- Assumes plastic deformations

Case 1 – Head-on crash

- **Egg Truck**
- **Impact Object (e.g., hard, unyielding surface)**
- **65 MPH**

Case 2 – Side Impact crash

- **Impact Object (e.g., train)**
- **55 MPH**
- **Egg Truck**
Results: 10^{-6}/yr Design Basis Accidents

![Graph showing the likelihood of exceeding PCV against peak contact velocity (MPH).](image-url)
Testing to Find DBA Forces

- In 2002, we crashed an “egg truck” into a hard unyielding surface at 65 MPH to measure truck and cargo accelerations
- Results provided the environments to design restraints and controls
My Lessons Learned

“In theory, there is no difference between theory and practice; In practice, there is.” – Yogi Berra

- Real world is dirty, messy, incomplete, unknown
- We must make assumptions, use limited data & imperfect models

“It's not so much what you don't know that can hurt you, it's what you think you know that ain't so.” – Will Rogers

- Reasonable assumptions can lead to reasonable analyses
- Tenuous assumptions, data or analyzes may be worse than no analysis

“All happy families resemble one another, each unhappy family is unhappy in its own way.” – Leo Tolstoy

- ...