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Outline

• Risk quantification and management

• Uncertainty in prediction and validationUncertainty in prediction and validation 

• Knowledge and ignorance terminology 

• Formalized languagesFormalized languages
– Generalized information theory

– Generalized theory of uncertaintyGeneralized theory of uncertainty

• Uncertainty at the system level

• Open questionsOpen questions
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Risk Terminology

Risk: The potential for loss or harm to systems 
due to the likelihood of an unwanted eventdue to the likelihood of an unwanted event
and its adverse consequences.

Risk is an aggregate of (Hazard and scenarios, 
Consequences, Vulnerability, Threat rate)
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Risk Assessment and 
Managementg

1. What could happen?
2. How likely is it to happen? Risky
3. What are the consequences if 

it happens?

Risk
Assessment

4. What can be done?
5. What are the costs and

Ri k
5. What are the costs and 

benefits?
6. What effect will these actions 

Risk
Management

have on future options?

4



Need for 
REALREAL
Data
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Data Sources for 
Quantitative Risk Analysis
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Risk Management

• Identify alternative risk mitigation strategies

• Assess benefits and costs of eachAssess benefits and costs of each

• Assess impact of strategy on future options

B fit (Ri k B f ) (Ri k Aft )Benefit = (Risk Before) – (Risk After)

Benefit

Cost

Benefit
Ratio B/C 

Cost
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Hurricane Katrina: Risk Methodology
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Hurricanes
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Hurricane Katrina: Methodology
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Event Tree

W
ater vo



W
a

te
r 

olum
e



volu
m

e
W

a
te

r
vo

lum
e

11

 ( ) ( ) ( | ) ( | , )i j i i j
i j

C c P h P S h P C c h S    

Simulated Hurricane Tracks

12



Hazard/Elevation Profiles
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Results provided are for illustration purposes.

Security Vulnerability Assessment 
(Security Threats)
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Rail Safety and Security

4 Different Influence Circles 

An Example 
LayerLayer 
Representing 
Vulnerability 

Zone to 
Protect 
alongalong 
the 
railroad

Inventory: people, structures, schools, 
utilities, police resources, fire stations, hospitals, … 

Requirements for risk methods

• A multi-hazard quantitative risk framework for 
informing decisions:informing decisions:
– Analytic

Quantitative– Quantitative

– Probabilistic

Consistent– Consistent

– Transparent

Defensible– Defensible

• Reliability of knowledge

16



Verification, Validation and 
Accreditation

Model
Qualification

REALITY

Analysis

Qualification

CONCEPTUAL MODEL

Programming

Computer
Simulation

Model
Validation

COMPUTERIZED MODEL

ModelModel
Verification

Model Validation

Validation and application domains (Sandia report)



Model Validation

Validation methods (Sandia report)

Validation: Capsize Risk
Model tests Simulation runsModel tests

r(t) terms
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Simulation runs 
(FREDYN or TEMPEST)

r(t) terms

-5

0

5

10

15

0 20 40 60 80 100 120

r1 cos = 
r2 cos = 
r3 cos = 
r4 cos = 
r5 cos = 
r6 cos = 
r7 cos = 
r8 cos = 
r9 cos = 
r10 cos = 
r11 cos = 
r12 cos = 
r13 cos = 
r14 cos = 
r15 cos = 
r16 cos = 
r17 cos = 
r18cos = 
r19 cos = 
r20 cos = 
r21 cos = 
r22 cos

Simulation tool input: wave elevation
90(?) frequencies

Three r(t) for the same spectrum

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100

r(t)2

Hypothesis 
testing

Nonlinear systemNonlinear system

S(ω)

6

8

10

12

14

sq
. m

 s
ec

-15

-10

t, sec

r22 cos = 
r23cos = 
r24 cos = 
r25 cos = 
r26cos = 
r27 cos = 
r28 cos = 
r29 cos = 
r30 cos = 
r31 cos = 

Nonlinear systemNonlinear system

S(ω)

6

8

10

12

14

s
q.

 m
 s

ec

-15

-10

t, sec

r22 cos = 
r23cos = 
r24 cos = 
r25 cos = 
r26cos = 
r27 cos = 
r28 cos = 
r29 cos = 
r30 cos = 
r31 cos = 

0

2

4

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

rps

Bretschneider wave spectra 

Three r(t) for the same spectrum

-40

-30

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100

r(t)3

Model test output: response 

0

2

4

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

rps

Bretschneider wave spectra 

Simulation tool output: response 
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Definition of Validation

• Validation
The process of determining the degree to whichThe process of determining the degree to which 
a model is an accurate representation of the 
real-world from the perspective of the intendedreal world from the perspective of the intended 
uses of the model

Knowledge & Ignorance

• Notions, representations and measures 
– Knowledge and ignoranceg g

– Information and uncertainty

– Other considerations
• Opinion

• Language

• Cognitive processesg p
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Knowledge & Ignorance

• The greatest enemy of knowledge is not 
Ignorance, it is the Illusion of knowledgeg g

Stephen Hawkingp g

23

Knowledge & Ignorance

• Knowledge can be defined as justified true 
beliefs (JTBs)( )

• Knowledge is subjective or relative, and 
cannot be separated from the human p
experience (model-dependent reality)

• Knowledge can be fallibleg

• Reliability of knowledge 

• Evolutionary epistemologyEvolutionary epistemology

24



Evolutionary Epistemology
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Knowledge & Ignorance

• The object of reasoning is to find out, from the 
consideration of what we already know, y
something else which we do not know.

C. S. Peirce

• It takes considerable knowledge to realize the g
extent of self ignorance.

Thomas Sowell

26



Knowledge & Ignorance

• Compared to our pond of knowledge, our 
ignorance remains Atlanticg

• Invited scientists to state what they would like to 
know in their respective fields, and noted that 
the more eminent they were the more readily 
and generously they described their ignorance

Duncan and Weston-Smith 

27

Classification of Ignorance

IgnoranceEvidential reasoning
(random sets)

Open world 
(unforseen events)

Irrelevance

Conscious Ignorance

Inconsistency Incompleteness

Blind Ignorance

UnknowableFallacy

InaccuracyConfusion

AbsenceUncertainty

Untopicality

Taboo

Undecidability

Conflict

Unknowns

Approximations

CoarsenessVagueness

Likelihood Ambiguity

UnspecificityNonspecificitysimplificationsCoarsenessVagueness

Randomness Sampling

UnspecificityNonspecificitysimplifications

Vagueness Probability &

28

g
(fuzzy sets)

Probability & 
statistics



Identification and Classification of 
Theories

Elements of 
Universal Set

Universal 
Set

Set (or Event 
as a Notion)

Element 
Belonging to a 

Set

Comments Including 
an Example 

Applicable Theory

Precise

Precise Binary

Non-binary

Crisp sets

Rough sets

Closed-
World 

Assumption Imprecise Binary

N bi

Illogical

F t

Imprecise

Non-binary

Precise Binary

Fuzzy sets

Illogical

Imprecise

Imprecise

Non-binary

Binary

Fuzzy rough sets

Illogical
Open

Non-binary Rough fuzzy sets

Open-
World 

Assumption
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Aleatory and Epistemic Uncertainties

Inherit randomness (i.e., aleatory uncertainty)
It cannot be reduced or eliminated by enhancing the– It cannot be reduced or eliminated by enhancing the 
underlying knowledge base. 

– Examples: wave loads on an offshore platform, Pp p ,
strength properties of materials

Subjective (or epistemic) uncertainty

P
– Uncertainty is also present as a result of a lack of 

complete knowledge. It can be reduced as a result 
of enhancing the state of knowledge by expendingof enhancing the state of knowledge by expending 
resources

– Example: Consequences  P̂p q
30

P



Aleatory and Epistemic Uncertainties

Combined uncertainty

PPP ˆ

)]ˆ(01[ˆ PCOVLNP  )](,0.1[ PCOVLNP 

22 )]ˆ([)]([)( PCOVPCOVPCOV 
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Classifying Monotone Measures 
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Classifying Monotone Measures 

• Classical probability theory: classical probability 
(additive) functions defined on classical (crisp) sets.  

f• Probability theory based on fuzzy events: classical 
probability (additive) functions defined on fuzzy sets.

• Dempster-Shafer Theory (DST) of evidence: a pair ofDempster Shafer Theory (DST) of evidence: a pair of 
special semicontinuous monotone measures, called 
belief and plausibility measures, which are defined on 
classical sets and which conveniently represent lowerclassical sets and which conveniently represent lower 
and upper probabilities, respectively.

• Theory based on feasible interval-valued probability 
distributions (FIPD): according to the FIPD, lower and 
upper probabilities are determined for all sets A  PX by 
intervals  of probabilities on singletons (x  X).

33

g ( )

Generalized Information Theory

• Generalized Information Theory (G. Klir):
– Level 1. Find an appropriate mathematical 

representation of the conceived type of uncertainty
– Level 2. Develop a calculus by which this type of 

uncertainty attributes can be properly quantifieduncertainty attributes can be properly quantified 
and manipulated

– Level 3. Find a meaningful way of measuring 
relevant uncertainty in any formalizedrelevant uncertainty in any formalized 
in the theory

– Level 4. Develop methodological aspects 
f th th i l di d fof the theory, including procedures for 

making the various uncertainty principles 
operational within the theory
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Generalized Theory of 
Uncertainty — Lotfi A. Zadeh 

• Uncertainty is an attribute of information

• Information is conveyed by constraining theInformation is conveyed by constraining the 
values of a variable

• Proposition is a carrier of informationp

• Proposition = generalized constraint

• Example: 
Critical pressure is 500 ksip
– constrains pressure
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Closed-World Versus Open-World 
Assumption

• Mathematical definitions based on the 
universal () and null () setsuniversal () and null () sets
• Closed world

m() = 0m() = 0

Bel() = 1

• Open world
m() > 0

Bel() < 1

I i t b d b d f id• Inconsistency based on a body of evidence 
– A high level of inconsistency  unseen events or 

nonempty “null set”
36

nonempty null set



Closed-World Versus Open-World 
Assumption

• Patterns:
– Computational linguistics, Cryptography p g , yp g p y

S = C, C, P, C, B, B, P, C
where 
C = cyber attack (1)
P = perimeter breach (2)
B b b tt k (3)B = bomb attack (3)

Pattern S = 11213321 

What is the probability of an unseen event (U)?
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Closed-World Versus Open-World 
Assumption

• Patterns
– Witten-Bell Model 

– Does not account for the sequence order and 
trends 

– Does not account for pattern of the non-sequence 
type (such as self similarity)
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Open Questions

• A unified theory: 
– Knowledge and ignorance
– Information and uncertainty

• Foundational bases: 
G li d I f ti Th– Generalized Information Theory 

– Generalized Theory of Uncertainty

• Uncertainty types and quantification methods• Uncertainty types and quantification methods 
• Open world and pattern analysis 
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