

Quantification of Margins and Uncertainty for Risk-Informed Decision Analysis

Kenneth Alvin kfalvin@sandia.gov 505 844-9329

Workshop on Risk Assessment and Safety Decision Making Under Uncertainty Bethesda, MD September 21-22, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Introduction: QMU at the NNSA Labs

- QMU stands for "Quantification of Margins and Uncertainties"
- QMU is a basic framework for consistency in integrating simulation, data, and/or subject matter expertise to provide input into a <u>risk-informed</u> decision-making process
- QMU is being applied to a wide range of NNSA stockpile issues, from performance to safety
- The implementation of QMU varies with lab and application focus
- The Advanced Simulation and Computing (ASC) Program develops validated computational simulation tools to be applied in the context of QMU

Yes, but what is QMU?

Decision Parameter

- Confidence Factor (CF) = M/U; goal is M/U > 1
- M/U was thought of as a communication tool
- What is Mean, what is U? Open questions w.r.t QMU

The NAS Review of QMU (2008) Concluded that the Labs Could Learn from QRA and PRA

- QMU provides input into a risk-informed decision making process
- The *completeness* aspect of QMU can benefit from the structured methodology and discipline of quantitative risk assessment (QRA) / probabilistic risk assessment (PRA)
- In characterizing uncertainties it is important to pay attention to the distinction between those arising from incomplete knowledge ("epistemic" or systematic), and those arising from device-to-device variation ("aleatory" or random).
- The national security labs should investigate the utility of a probability of frequency (PoF) approach in presenting uncertainties in the stockpile
- A QMU methodology is *connected* if the interactions between failure modes are included
- The design labs should continue to focus attention on quantifying uncertainties that arise from epistemic uncertainties such as poorly-modeled phenomena, numerical errors, coding errors, and systematic uncertainties in experiment
- The NNSA and design labs should ensure that the certification plan for any RRW is supported by strong, timely peer review and by an ongoing, transparent QMU-based documentation and analysis in order to permit a confidence level necessary for eventual certification

Jon C. Helton, *Conceptual and Computational Basis for the Quantification of Margins and Uncertainty*, SAND2009-3055

- Aleatory uncertainty: (perceived) randomness in the occurrence of future events (frequency interpretation)
- Epistemic uncertainty: Lack of knowledge wrt appropriate value to use for a quantity that has a fixed value in the context of a specific analysis (confidence or belief interpretation)

QMU Isn't New: WIPP Performance Assessment

M = Req - Mean = 1 - 0.0542 = 0.9458

 $U = U_{05} - Mean = 0.14 - 0.0542 = 0.0858$

M/U = 0.9458/0.0858 = 11 (Definition is Not Unique)

A lot of information is lost in distilling QMU into a single number, M/U

Probability-of-Frequency Provides the Necessary Mathematical Rigor Broadly Accepted by the NAS

- **Probability space** (A, A, p_A) with density function $d_A(a)$ characterizing aleatory uncertainty (each element a of A corresponds to one possible future behavior of the system under study)
- **Probability space** (E, E, p_E) with density function d_E (e) characterizing epistemic uncertainty (each element e of E corresponds to one set of possible values for epistemically uncertain analysis inputs)

Practical evaluation of the integrals is far from cookbook

integrals involving \mathcal{A}, \mathcal{E} and f(a|e)

Sometimes We Rely on M&S to Assess Performance

e.g., Environmental Extrapolation, Aging, etc

Maximum High Voltage, Steady State

M/U> 4; therefore, the impact of this failure mode on system performance need not be assessed explicitly by representation in a reliability model

Credibility of the Modeling that Produces Simulation-based QMU Results Must be Measured and Communicated

Predictive Capability Maturity Model (PCMM)

PCMM is an Organizing Framework for Capability Development that Cuts Across Organizational and Programmatic Boundaries

How Much is Enough? A Graded Approach is Appropriate From the Perspective of CompSim Stewardship

PCMM Practice		Maturity Level 0 Low Consequence, Minimal M&S Impact, e.g. Scoping Studies	Maturity Level 1 Moderate Consequence, Some M&S Impact, e.g. Design Support	Maturity Level 2 High-Consequence, High M&S Impact, e.g. Qualification Support
Representation and Geometric Fidelity (RGF) Are representation errors corrupting simulation conclusions?	Characterization (how close to as built are you representing the system)	 (unjustified) conceptual abstraction of the whole system 	 Significant (unjustified) simplification or stylization of the system at the level of major elements 	 Limited (unjustified) simplification or stylization of the system at the level of major and minor elements
	Computation Error (what impact does imperfect RGF have on computation results)	 Judgment only, numerical errors introduced because of imperfect RGF not addressed 	 Sensitivity to imperfect RGF explored for some System Response Quant. (SRQs) 	 Numerical errors estimated for imperfect RGF for relevant SRQs
	Verification (is what you represented really what was built)	 RGF not verified, RGF simply used without verification that it represents the actual system as built 	RGF verified only by the analysts	RGF independently verified

CoreBestMeasured Against StandardsAttributePracticesExpressed in Terms of Increasing Rigor

- Level 0: Low consequence; minimal M&S impact (e.g., scoping studies)
- Level 1: Moderate consequence; some M&S impact (e.g., design support or qualification test support)
- Level 2: High consequence, high M&S impact (qualification decision support)
- Level 3: High consequence; decision making based predominately on M&S (dominant basis for qualification or certification)

There are other ways to frame solutions to the need for a graded approach

M&S-Based QMU Results Being Used in High Consequence Decision-Making Should be Peer Reviewed

- Increased Objectivity
- •Assurance of Evidence Basis for Predictive Capability Assessment

•Hedge against "unknown unknowns" that were actually "shoulda been knowns"

Summary and Conclusions

- QMU has the technical dimensions of Quantitative Risk Assessment (QRA)
- PoF is a NAS-accepted conceptual framework for dealing with aleatory and epistemic uncertainties
- Take a system perspective
 - Requires a consistent conceptual framework for characterizing and propagating aleatory and epistemic uncertainties
 - Reliability model is an integrating framework for weapon performance
 - Fault tree can be an integrating framework for weapon safety
- Credibility of the modeling that produces QMU results must be measured and communicated
- M&S-based QMU results should be peer reviewed

