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Reliability and Risk Engineering, Analysis, and Management

NSF-IGERT Graduate Program at VanderbiltNSF-IGERT Graduate Program at Vanderbilt

Educational and Research ThemesEducational and Research Themes
Multidisciplinary integration
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Devices, 
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Large 
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Economic, legal, regulatory, 
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Model
Integration

UncertaintyCross-cutting methodologies Uncertainty 
& Risk

Methods

g g
Uncertainty quantification, propagation 
Risk quantification
Decision-making under uncertainty

Participants
• 42 graduate students (34 Ph.D., 8 M.S.) 
• 30 professors Engineering, Math, Economics, Business, Psychology, 
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Medicine
• Summer researchers (undergraduates, high school teachers)



Reliability and Risk Engineering, Analysis, and Management
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Reliability and Risk Engineering, Analysis, and Management
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Student recruitment• Southwest Research Institute

• Transportation Technology Center



Risk Analysis Issues

• System modeling
• Physics-based behavior models finite elements, bond graphs
• Surrogate models (GP, PC, RBF, NN)
• Fault trees, event trees, petri-nets
• Bayes networks

• Risk analysisRisk analysis
• Multi-level  -- Material component subsystem system  
• Risk variation over space and time
• Multi-physics, multi-scale problems

• Data Uncertainty
• Sparse data, interval data, measurement uncertainty
• Expert opinion• Expert opinion
• Heterogeneous information

• Model Uncertainty
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y
• Model form, model parameters
• Errors some deterministic, some stochastic



Reliability and Risk Engineering, Analysis, and Management

Materials durability, fatigue, fracture

y g g y g

Systems health diagnosis and prognosis
Decision-making under uncertainty
Model uncertainty, calibration, validationy

 
Information 
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FEM and 
Dynamic 

Usage 
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Model 
update 

Physical 
Variability

Uncertainty 

Uncertainty 
Modeling 

Analysis

Probabilistic 
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Prognosis

Bayesian 
Updating 

Decision making /
Risk management

Variability 

Model 
Uncertainty 

Damage 
Mechanism 

Analysis

Prognosis

Inspection/
Testing

Reliability 
update
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Rotorcraft Damage Tolerance (FAA)

Rotorcraft mast
• Two-diameter hollow cylinder 

Elli ti l f k i fill t

Analyses
• Model calibration

C S• Elliptical surface crack in fillet 
region

• Sub modeling technique 
Accuracy in stress intensity factor

– Calibrate EIFS, model parameters
– Estimate model errors in different stages 

of modeling

• Model validationAccuracy in stress intensity factor • Model validation

• Prediction uncertainty quantification 

• Global sensitivity analysis

• Load monitoring and updating
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Sources of Uncertainty

• Physical variability
• Loading
• Material Properties

• Data uncertainty
• Sparseness of data used to quantify material propertiesSparseness of data used to quantify material properties
• Output measurement uncertainty (final crack size, detection probability)

• Model uncertainty/errors
• Analysis assumptions LEFM planar crack• Analysis assumptions LEFM, planar crack
• Finite element discretization errors
• Combination of multiple crack modes
• Approximation due to surrogate modelApproximation due to surrogate model
• Crack growth law model form
• Model parameters crack growth model

initial flaw size
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Dynamic Bayes Network

Cycle i Cycle  i+1
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Model Validation Metrics

Null Hypothesis H0: y ∈ f(x)

Alternative Hypothesis: H : y ∉ f(x)

Model response x
Observed values y Alternative Hypothesis:    H1: y ∉ f(x)y

Classical hypothesis testing

H0: E(y) = E(x)      Var(y) = Var(x)

H1: E(y) ≠ E(x)      Var(y) ≠ Var(x)
t  test
chi-square test

Bayesian hypothesis testing
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Bayes Factor        
B

Confidence  
= B/B+1



Crack size prediction UQ

Std. Dev.

Bayes 
Factor Confidence
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Sensitivity Analysis

• Local Only one uncertainty is considered and all
others are ‘frozen’ at the mean valuesothers are frozen at the mean values

• Global Analyze sensitivity of output over the entire
domain of inputs rather than at mean valuesp

• First order effects (S) & Total effects (ST)
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Initial flaw size Crack model error Crack model 
parameter C
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Cementitious barrier PA

Multi-physics analysis

Diffusion of 
IonsInputs

- Porosity Damage 
Chemical Reactions

- Porosity
- Composition
- Modulus
- …..

Progression

Calibration of  chemical reaction 
model parameters (equilibrium 

t t )Damage 
Accumulation

constants)

Durability prediction
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Extrapolation from Validation to Application

Bayes Network Use for

C
m

• Calibration

• Validation

• Extrapolationa
b e

g Extrapolation

c

d
g

f

MCMC techniques 
Gibbs sampling Extrapolation scenarios

• Nominal values to Extreme valuesNominal values to Extreme values

• Test conditions to Use conditions

• Validation variables to Decision variables
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UQ in system-level prediction

Foam
System 

level

Level 0 Level 1 Level 2

Material 
characterization

Component level Sub-system 
level

Joints

characterization level

Joints

Hardware data and photos courtesy of Sandia National Laboratories Increases
System complexity 

Increase
Sources of uncertainty
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Bayes Network Implementation

f
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Y = Experimental data
X = FEM prediction
1 - Level 1
2 - Level 2

J = Joints
F = Foam
θ = Calibration parameters X
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2 - Level 2
S - System 

θ = Calibration parameters
ε = Error terms

sX



Likelihood Approach to Data Uncertainty

• Likelihood function
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P – distribution parameters   
m – point data size
n – interval data size

interval data sparse point data

• Maximum Likelihood Estimate Maximize L(P)

• To account for uncertainty in P   
∫

=
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)()(
PL

PLPf

• Two approaches
– Family of distributions for X (for every sample of P probability 

distribution for X)
Si l di t ib ti f X– Single distribution of X 

• Can use non-parametric distributions

∫= dPPfPxfxf )()|()(
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• Can use non-parametric distributions



Risk Management: System Health Monitoring

• System integration
• Integrate reliability/risk methods with SHM
• Integrate diagnosis with prognosis

• Rapid diagnosis and prognosis
• Derive damage signatures• Derive damage signatures
• Qualitative isolation, then damage quantification

• Uncertainty Quantification
• Quantify variability, uncertainty, errors 
• Estimate Confidence in diagnosis/prognosis
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• Estimate Confidence in diagnosis/prognosis



Decision-Making Under Uncertainty

Optimization

A1 A2

MDA

A1 A2

Risk Analysis

• Various stages in life cycle design, operations, maintenance
• Multiple objectives, MCDA, decision trees, utility-based formulations
• Multi-disciplinary systems

Optimization for reliability and robustness• Optimization for reliability and robustness
• Include both aleatory and epistemic uncertainties

• Dynamic, network systems y y
• Critical facility protection – design of safeguards/detectors
• Transportation networks, supply networks, emergency response systems

• System of systems 
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• Multiple system linkages
• Homeland security, military, commercial applications



Fire Satellite System 

Target latitude,
Target longitude
Target size
[Altit d ]

Analyses

Multi-disciplinary uncertainty propagation

Design optimi ation for reliabilit rob stness

Orbit

[Altitude]

Orbit period, eclipse period

Design optimization for reliability, robustness

Orbit Power

P_ACS

Orbit Period,
Satellite velocity,
Max slewing angle

_

I_min, 
I_max

Attitude
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D i i

System of Systems Decision-Making Under Uncertainty

System 
Complexity

Decision
making

• Risk-informed
• Design ComplexityOptimization

• Non-linear
• Stochastic
• Static/Dynamic

• Monolithic
• Family of Systems
• System of Systems

• Design
• Operations 
• Utility theory

SOS UncertaintyModeling • Aleatory
• Epistemic 

• Coefficient based
• System dynamics
• Agent based

S t d l

• Analysis
• Management

• Information bonded

• Fully rational 
• Bounded rational 

• Surrogate model

Risk

Types of 

Human in the 
loop

• Energy bonded
• Hybrid 
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Pandemic Influenza Risk Management
CIPDSS (LANL)
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Conclusion

System risk assessment
Continuing opportunities for methods development

System risk assessment
Risk variation with time and space
Dynamic, multi‐physics, systems of systems
Computational effortComputational effort

Decision‐making under uncertainty
Design, operations, maintenance, risk management
Data collection Model de elopmentData collection, Model development
Embedding flexibility

Include data uncertainty
l d lSparse, noisy, qualitative, missing data, intervals, expert opinion

Multi‐scale fusion of heterogeneous information

Include model uncertainty

Vanderbilt University                                                                reliability-studies.vanderbilt.edu

y
Validation, calibration, error estimation, extrapolation


