Risk in Technically Severe Environments: Contaminant Isolation Facilities

J. Clarke, K. Kostelnik, J. Harbour, F. Sanchez, F. Parker and D. Kosson

> Civil and Environmental Engineering, Vanderbilt University Consortium for Risk Evaluation with Stakeholder Participation Idaho National Engineering and Environmental Laboratory

SRA 2004 Annual Meeting December 5-8, 2004 — Palm Springs, California

Environmental degradation has resulted from numerous anthropogenic causes

- Waste management
 - Hazardous,
 - Radioactive,
- Energy production
- Manufacturing
- Defense related

Contaminant Isolation Facilities

A set of natural conditions, engineered barriers, and institutional controls that effectively prevent the unwanted release of contaminants.

Desired Attributes:

- System performance is verifiable (transparent),
- System performance is maintainable (repairable), and
- System performance is sustainable (affordable, doable).

A variety of Contaminant Isolation Facilities are being used to isolate residual waste.

Experience is beginning to show that CIF do not always perform as expected

<u>Failure</u> – loss of contaminant isolation either through ingress (intruders) or migration of contaminants from the facility (egress)

<u>Consequences</u> – site-specific; depending on contaminants, exposure routes/rates, receptors

Natural processes can influence system performance

Social conditions can influence system performance

Many factors influence contaminant isolation system performance

Various configurations of Engineered Barriers and Institutional Controls are being used for long-term waste isolation

•

•

•

•

- Remedial Processes
- Physical Site Security
- Surface Covers
- Subsurface Barriers
- Maintenance
- Monitoring

- Information Management
- Stakeholder Awareness
- **Government Controls**
 - Zoning
 - Ordinances
 - Orders/Decrees
 - Permits
- **Property-based Controls**
 - "Deed Restrictions"
 - Covenants, Easements, Servitudes
 - Statutory Controls
 - Contracts

Case Study Analysis

	Information Management	Stakeholder Awarenen	Zoning	Ordinances	Orders & Decrees	Permit System	Deed Restrictions	Contracts	Government Ownership	Phynical Site Security	Surface Cover:	Subcurface Barrier:	Асйте Реосение:
Anaconda	*	*	NA	*	*	*	*	×	NA	*	*	*	*
Love Canal	*	*	*	*	*	NA	*	*	*	*	*	*	*
Maxey Flats	*	*	*	*	*	NA	*	NA	*	*	*	*	*
Rocky Mt. Arsenal	*	*	NA	*	*	NA	NA	NA	*	*	*	*	*
Spring Valley	*	*	NA	*	NA	NA	NA	NA	NA	*	NA	NA	*
Canonsburg	*	*	NA	*	*	NA	NA	*	*	*	*	*	NA
Burrell	*	*	NA	*	*	NA	NA	*	*	*	*	*	NA

★ = Controls in place; NA = Controls Not Applied at this Site

Lessons Learned

- Management Process
 - Operate in a "Fix-as-Fail" mode
 - A variety of EC and ICs are being used
 - Unintentional vs. Intentional intruder scenarios

Information Management

- Varies from site to site
- Varies across regulatory drivers (i.e. CERCLA, UMTRA)
- Admin Record generally good up to ROD
- Little/no integration of spatial, temporal, and analytical data
- Financial Mechanisms
 - Heavy reliance on annual appropriations
 - Financial sustainability remains a question

Lessons Learned

- Multi-organizational Involvement
 - Legal authority not always clear
 - Federal Regulations, State Statutes, Local Zoning
 - Community involvement varies
 - Active participation, neutral/indifferent, opposition
 - Independent oversight is valuable
- Monitoring and Enforcement
 - Site monitoring generally designed to identify EC failure
 - Site monitoring often changes post-ROD
 - Monitoring is generally reduced rather than increased
 - Little/no monitoring of ecosystem, land-use, demographic change
 - Little/no monitoring of ICs (CERCLA 5-year Reviews)

Failure Analysis

- an analytical technique that describes the collection of events that must occur to explain a described state of a system, i.e. CIF Failure

- a logical taxonomy for organizing and analyzing the components of a CIF, i.e. Institutional Controls and Engineered Barriers

- a useful method for identifying how mitigation and monitoring can reduce the risk of failure

Contaminant Isolation Facility Management Process

Summary

Performance

- Without intervention (i.e. maintenance) CIFs will ultimately fail
- Loss of institutional controls and loss of engineered barriers are precursors to system failure
- Current performance does not imply future performance

<u>Maintenance</u>

• Timely maintenance is key to the prevention of system failure

Monitoring

 Monitoring should be focused on precursors to failure and provide timely information that permits corrective action before system failure occurs

"Monitoring for Maintenance" vs. "Monitoring for Failure"

