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Motivation

Need for realistic (as practical) estimates of long-term
constituent release for near-surface disposal of
cementitious and other non-vitrified waste forms.

Applicability
Performance Assessments and 3116 Determinations
= HLW tank closure using grout
= Disposal of saltstone & similar wastes at SRNL, INL, ORP
= Primary and secondary waste streams from steam reforming
» Secondary waste streams from vitrification
Waste Treatment Acceptance Criteria

Operational Controls

Primary Constituents of Concern
Tc-99, Np-237, Se-79, 1-129, C-14, U, Cs-137, others
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Broader Questions

What basis should be used to
Define the appropriate type of waste form for specific wastes?
Estimate long-term waste form and disposal system performance?
Establish treatment (operational) criteria?

Define monitoring requirements that are pre-emptive to system
failure?

Applicable to
Waste forms for low activity wastes (SRNL, INL, ORP)
Tank closures
In-situ grouting
Management of future wastes from reprocessing (GNEP)
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Constituent Release

Primary Factors

» System Integrity
= Engineered and Institutional Systems
» Waste Form Performance
Physical Integrity
Water Contact
Moisture Status
Oxidation Rates and Extent
Constituent Chemistry and Mass Transport
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Processes and Impacts

Water Contact

o
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Monolithic Matrix
» Flow-around
» Low interfacial area
» Diffusive release

Stressed Matrix
» Flow-around/through
» Higher interfacial area
» Diffusion-convection

Spalled Matrix
» High permeability
» Very high interfacial area
» Equilibrium-based release

Impact

» Missing evolution of a crack
network tied to water contact

» Both “intact” & “degraded”
cases are not realistic

ﬂg Consortium for

Risk Evaluation with

m& Stakeholder Participation

May 26, 2006

Conceptual Model

» Micro-cracks develop, increasing
solid-liquid surface area

» Bridging of micro-cracks create

macro-cracks

» Through-cracks develop over

time, leading to convective flow

» Ultimate end state may be

permeable matrix —

release

equilibrium

Current Assumptions and

Limitations (DOE)

» Case 1: Waste form is intact for

all time

» Case 2: Waste form has evenly-

spaced through-cracks at
beginning of assessment
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Processes and Impacts
Moistu re Transport Conceptual Model
ol Saturat » Waste form consumes water via
Y _ aturation _ hydration reactions
‘ Hamb Capulla_ry saturation s Moisture exchange w/environment
# Continuous Liquid t :
. : = Evaporation/condensation
RH=100% & Discontinuous Gas ! -
N = Capillary suction
Transition Zone = Intermittent wetting (precipitation)
# Continuous Liquid y
o Continuous Gas » Water content determines
Insular Saturation = (Gaseous degradation processes
« Discontinuous Liauid (oxidation, carbonation)
: E = Constituent diffusion pathways
# Continuous Gas
plaigidy Completely Dry Current Assumptions and

Diffusivity Limitations (DOE)

1 » Waste form remains saturated
2 = Gas phase reactions limited to
' ) external surfaces
Liquid Gas
RH < 1oory OO = , Impact
sl s OO s Diffusivities are not constant over
insular capillary : .
saturation saturation molsture regime
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Processes and Impacts

Oxidation

Conceptual Model
Rates and Extent LIMGERNA e 0e

s Waste form pores — two phase system
of gas and liquid
occluded s O, transport via gas is dominant.

pore =« Oxidation may lead to change in
leaching behavior

s Increased Tc-99 release

Current Assumptions and
Limitations (DOE)

‘_' OXIdatlon front s O, transport via liquid only
# Instantaneous reaction with O, leading
Lo to release
Air Water (A/W) Im pact
D,, [cm¥s] (1) 0.21 | 0.000019 | 1.1E+04 :
A 0.0 @ = e O Eory # Gas phase transport not c.on.S|dered
(1) Wilke and Chang, 1955 = Flux of O, (gas) ~108 > liquid phase flux

(2) www.swhbic.org/education/ env-engr/gastransfer/gastransf.html @ Impact to Tc-99 oxidation minimized
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Processes and Impacts

Carbonation Conceptual Model
OO R E = BACHN(S)
= Gas phase diffusion of CO,
= Liquid phase diffusion of HCO,
» Pore water pH decreased

= Alters solubility of constituents.
» Carbonation

Increases mineral dissolution
I

= Expansive precipitate — internal stress (cracking)

= Pore blocking — increases diffusional resistance
<~ carbonation front (decreases oxidation, release rates).

100 r Current Assumptions and
_ 1: | Impact Limitations (DOE)
E” » Rate calculation does not ® COj transport via liquid only
@ ' o account for CO, transport = Carbonation causes cracking
! @ Noncarbonated s Potential for Speciation which increases permeability
@ Carbonated
R changes (e.g., As)
2 4 6 8 10 12 14 » Pore structure changes
Leachate pH
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Processes and Impacts

Major Constituents

Ca moving front <—

Cca=Ceao
Ca_sp, 0
Ss0r=5504,0

1
O e
dissolution :

_ SO, moving front€—,

pH

Waste'
Form
(high SO,)

— SO, moving front
1

BN

Sulfate species
precipitate in
cracks and
large pores in
vault concrete.
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Conceptual Model

s Transport described by moving
dissolution fronts

s Dissolution/diffusion of Ca(OH), and
CSH control pore water pH

= pH gradients alter trace species release

s SO, leaching from waste into vault
attacking concrete physical structure.

Current Assumptions and
Limitations (DOE)
s Simple mass transport models

s Nature of and potential for sulfate
attack from waste is not considered

Impact

s Mass transport estimates do not reflect
the dynamic chemistry and mineralogy
of the waste form

Vanderbilt 22

May 26, 2006 University

Department of Civil and
Environmental Engineering



-

P

A—

Processes and Impacts

Leaching of

Trace Constituents

Ca moving front <—

Me movilng front

leachant

Diffusion
Model predicts
flux 102
greater than
measured
after ~1 year

|
Ca(OH), |
B dissolution |
! 1
AMD - Selenium
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Conceptual Model
» Release based on coupled chemistry
and mass transport.

» Release dependent on:
Moisture conditions

pH gradients

Redox chemistry
Boundary layer formation

Current Assumptions and
Limitations (DOE)
» Simplified mass transport models

*» WACs and projections based on
TCLP and ANS-16.1

= Constant D (space and time)
s Unrealistic release environment

Impact

» Performance assessments may
grossly over- or under-predict
release
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Integrated Long-Term Degradation

Chemical degradation and physical

stress effects are coupled and

Integrated.

Physical stress
Cyclic loading
Flexural bending
Drying shrinkage
Seismic events
Settlement

o

o

o

L

L

Chemical degradation
» Oxidation
» Leaching

» Expansive reactions
= Carbonation
= Sulfate attack
= Rebar corrosion

ﬂg Consortium for

Risk Evaluation with
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Microcracks

e Increase porosity

e Increase interaction
pore water/surface

f\_//\

oy

\

Spalling

e Loss of cohesiveness
e Two body problem

e Eventual release from
“granular” material

May 26, 2006

Through-cracks
e Preferential flow path
/ - Diffusive and
convective release
e Loss of strength

-

E\ J
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Current Studies on Secondary Waste from ORP

Motivation

» Tc-99, 1-129 in secondary wastes from vitrification

Objective

» Leaching assessment of reducing grout for secondary waste treatment.
» Comparison with “ANS16.1-type” testing in synthetic ground water.

Reducing Grout

» Ground Steel Slag 43 wt%
» Class F Fly Ash 42
;- DPC A
» DI Water 74

Synthetlc Hanford Groundwater

CaSoO, 1.20 mmol/L
. NaHCO 1.04
, Mg(HCO,), 0.62
e 0.34
» KHCO, 0.19
» Ca(HCO,), 0.18
ﬂg Consortium for
Risk Evaluation with May 26, 2006

m& Stakeholder Participation

Contaminants in Reducing Grout

Ag
As(V)
Ba
Cd
Cu
Cs
I
Pb
Re
Sb
Se
Zn

mg/kg | Added As

243 | AgNO;3
1000
200 | Ba(NO3),
1000
1000
1000 [ csCl
1214 | Nal

1000 [ Pb(NO3),
971 KReO,
952 | Sb,05
751 | KSeO,
1000 [ Zn(NO3),

NazHASO4'7HQO

Cd(NO3),*4H,0
Cu(NO3),+2.5H,0
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Equilibrium — Major Species
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Equilibrium — Trace Species
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Mass Transport Tests

AMD - Calcium
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MTOO1 Test

Tank Leaching in DI
Water

Constituent Flux
Constituent Release

Comparison
AMD — DI Water

Flux @ constant
diffusivity (green dash)
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Mass Transport Tests

AMD - Rhenium
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Mass Release [mg/m?]
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400 500

MTOO1 Test

Tank Leaching in DI
Water

Constituent Flux
Constituent Release

Comparison
AMD — DI Water

Flux @ constant
diffusivity (green dash)

14 * T
Vanderbilt ==
University

Department of Civil and
Environmental Engineering



e

Synthetic Groundwater

Cesium
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Comparison
» AMD — DI Water

» AMG — Synthetic
Hanford Groundwater

Hanford Groundwater

CaSQO, 1.20 mmol/L
NaHCO, 1.04
Mg(HCO;), 0.62
CacCl, 0.34
KHCO,4 DFEES
Ca(HCO;), 0.18
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Summary of Key Gaps
INn Current Performance Evaluations

Gas Phase Processes and Transport
Oxidation
Carbonation

Geochemistry-based Release Modeling
Pore water chemistry (e.g., pH, redox, composition)
Boundary layer and gradient effects

Moisture Transport and Water Content
Gas phase attack
» Transport under unsaturated conditions (pore connectivity)

“Degradation” and Aging Mechanisms
Physical deterioration (crack formation at multiple scales)
Chemical aspects of carbonation
Oxidation of waste form increasing release of Tc, Se

» Physical changes from Precipitation and Expansive Reactions (e.g., SO,) at
external surfaces (e.g., pore sealing) and in pores

Integration of Models Coupling Degradation Mechanisms
Validation of Assumptions/Simulations
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Process- and Mechanism-Based
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Experimentation & Modeling

Observational
Experiments

Parametric Experimentsw

Conceptual Model
(chemistry & physics)

.

Mathematical Model &
Computer Simulation

(individual processes to obtain
parameter values & constitutive
relations)

:

Model Verification
(comparison to other
models & limit cases)

v

Model

[ Integrative Experiments w

(multiple processes & field tests)) Independent data | Validation

Field Scenarios>

Long-Term
Performance
Estimates

ﬂg Consortium for

Sensitivity

Analysis

: Risk Evaluation with May 26, 2006
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Uncertainty

Analysis
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LeachXé ~

Software-based system for evaluating leaching
s Incorporates multiple processes and system configurations
s Data management/interpretation
s Geochemical analysis via ORCHESTRA (Meeussen, 2003)
s Database of material leaching information

Materials

; Materials
(Leaching data, Leedi
Composition, Physical eaching

characteristics) Database
Scenarios
(e.g., fill .
characteristics, Scenario
geometry, infiltration, Database
hydrology)
Regulatory
(Regulatory Regulatory

thresholds and
criteria from different
jurisdictions)

Database

User Input, Output
Test Results Database Calculation Reporting and
and Parameters Access Engines Graphing
ﬁ g Consortium for Vanderbilt 22
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LeachXS Simulations

Solid-liquid partitioning
Adorption to DOM, FeOH

o Solid phase Pb Water phase Pb
§2'5E-0 Eglgkl/qydr)oxides = T H =l
S 2.0E-04 . =0, 0% | |
< 1.5E-04 2 06 1
o) =
1.0E-04 © ] ]
c 1.0E-0 a 04 B Other
5.0E-05 H 0.2 1 HFree
. = BDOM
0 0E+oo A H H L HH WWEMEIE"E § EE o .
g TR e et R | o o T e s
pH

CO, dissolution

Mass Transfer £

4+ | Leachant
Diffusion coupled with geochemistry Ry
: R
Example: Cement Material bdane s Cement
_ ey Material
= Leachant (open to air) at upper surface ;*:;,:‘n
I e L
= Acidic soil at lower surface i
Soil
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Leachant Simulation - LeachXS

CO, equilibrium ) . Calcite.min Calcite.min

Leachant

- ', 2 Cement
Material

Acidic
Soil

DI Water Hanford GW DI Water Hanford GW

Portlandite.min Portlandite.min Brucite.min Erucite.min

DI Water Hanford GW DI Water Hanford GW DI Water Hanford GW
ﬂ e, Yaulaerpun =4
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Suggested Path Forward

Continue on-going CRESP work with SRNL personnel and others on
development of long-term release framework.

Cement/concrete degradation “State-of-the-Art”

Developing approaches for short-term (< 1 year) improvement of
assessments

Developing experimental and modeling plan (ca. 3-5 year) on waste
form degradation to account for major processes

Experimental studies coupled with model development and
validation
Formation/effect of boundary layers (e.g., CaCO;, oxidized layer)
Moisture transport and status
Oxidation rates
Physical changes considering key geochemistry and mass transfer
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Conclusions

Significant processes are not included in current DOE
performance evaluations that can have major impacts
constituent release.

It Is Important to have a more robust system
understanding and model for near-term and longer-
term DOE waste management decisions.

CRESP and SRNL, along with others, are currently
working together to provide the needed evaluation
system components.

ﬁg Sgpearacieor Vanderbilt =5
"4 Risk Evaluation with May 26, 2006 University

ﬂ Z_! Stakeholder Participation P -
Environmental | Engineering



Backup slides

R e
m Consortium for Vanderbilt .

Risk Evaluation with May 26, 2006 UlllV&l‘Slty
m & Stakeholder Participation Department of Civil and
Environmental Engineering



Integrated Use of Testing and Simulation

. _CLaboratory Testing). =<

Modeling Laboratory
Testing for Parameter

:

Initial, Conservative
Release Estimate
(over-estimates release)

o

Source Term, f(t)

( 7 h ° N
| | ( Estimation \
CuP | pe—— | Cutfol) | '
|l a%ch P —ependence e | i pH titration | Geochemical Equilibrium Model !
| | | 'Solid phase - Solution Equilibrium | |
orewater — [ | Surface Adsorption to Fe, Al, Si, |
pl il | | f
M|—| Batch LS Dependence Test Ceq:f(l‘s) | OFga”w Carbon_ |
oF | o | Solution Complexation [
I Y < DOC Association |
C_=fLS) Column Leach Test | i v pH, Redox, lonic Strength |
eq 3
where LS=f(t)| |
I Tank Leaching Test | } Mass Transfer Model
; o | Diffusion or Percolation |
| (Monolith Leach Test or i Flux=f(t) N ” I
t > Initial Conditions |
I Compacted Granular Leach I o
Test) | | Boundary Conditions |
I | | Kinetic Limitations |
l\ ! N~ /
Initial Flux
DObS
— Field Scenario . .
Field Scenario Models Descriptions M
> - - (Coupled Geochemistry
8 (Empircal/ semi- Geometry and Mass Transfer)
P analytical Mass Transfer) — Hydrology -
» Initial Conditions Refined Release
Boundary Conditions .
Estimate
Redox

|

Refined Release Estimate
(accuracy depends on
model, field scenario and
parameter uncertainties)

Fate and Transport Model

Point of Compliance
Comparison with Regulatory
Criteria
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