Conceptual Models and Approaches to Estimating Long-term Contaminant Release from Near Surface Disposal of Cementitious and Other Waste Forms

Presented by

Andrew Garrabrants and David S. Kosson

Vanderbilt University & CRESP

To

Ines Triay (EM-3) and Mark Gilbertson (EM-20) May 26, 2006

Collaborations

Vanderbilt University

D. Kosson, A. Garrabrants,

S. Mahadevan, F. Sanchez,

J. Clarke, S. Lopez

Netherlands Energy Research Centre (ECN)

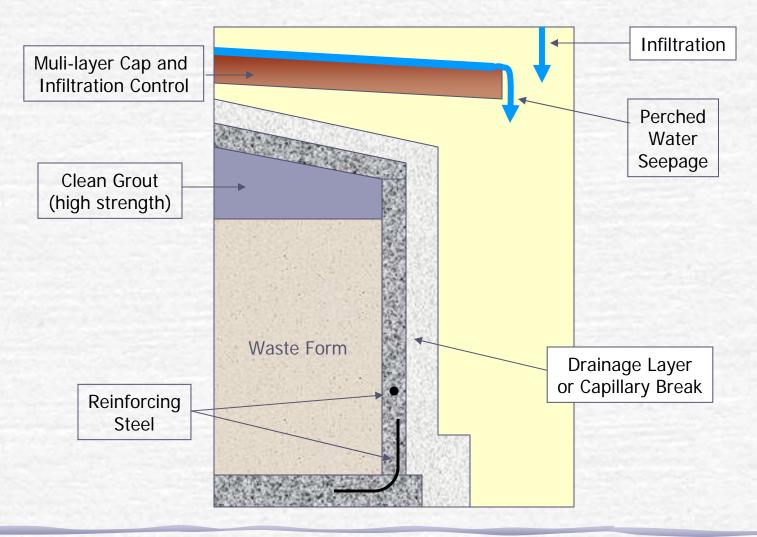
H. van der Sloot, R.Comans, J.C.L. Meeussen, A. van Zomeren, P. Seignette

DHI (Denmark)

O. Hjelmar

Savannah River National Lab

C. Langton, G. Flach


Pacific Northwest National Lab

J. Serne, T. Brouns

Generic Disposal System

Motivation

Need for realistic (as practical) estimates of long-term constituent release for near-surface disposal of cementitious and other non-vitrified waste forms.

Applicability

- Performance Assessments and 3116 Determinations
 - HLW tank closure using grout
 - Disposal of saltstone & similar wastes at SRNL, INL, ORP
 - Primary and secondary waste streams from steam reforming
 - Secondary waste streams from vitrification
- Waste Treatment Acceptance Criteria
- Operational Controls

Primary Constituents of Concern

Tc-99, Np-237, Se-79, I-129, C-14, U, Cs-137, others

Broader Questions

What basis should be used to

Define the appropriate type of waste form for specific wastes?

Estimate long-term waste form and disposal system performance?

Establish treatment (operational) criteria?

Define monitoring requirements that are pre-emptive to system failure?

Applicable to

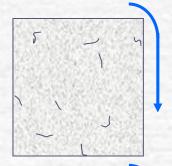
Waste forms for low activity wastes (SRNL, INL, ORP)

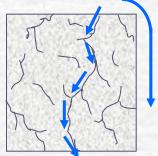
Tank closures

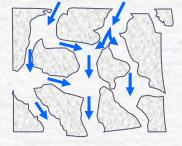
In-situ grouting

Management of future wastes from reprocessing (GNEP)

Constituent Release


Primary Factors


- System Integrity
 - Engineered and Institutional Systems
- Waste Form Performance
 - Physical Integrity
 - Water Contact
 - Moisture Status
 - Oxidation Rates and Extent
 - Constituent Chemistry and Mass Transport



Water Contact

Monolithic Matrix

- Flow-around
- Low interfacial area
- Diffusive release

Stressed Matrix

- Flow-around/through
- Higher interfacial area
- Diffusion-convection

Spalled Matrix

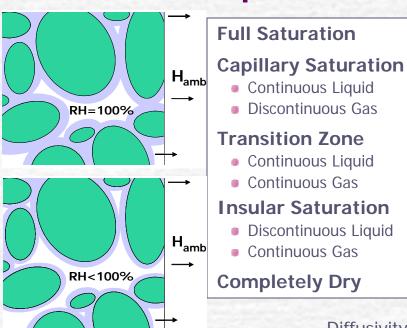
- High permeability
- Very high interfacial area
- Equilibrium-based release

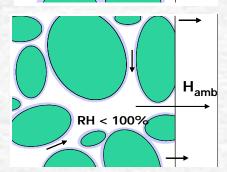
Impact

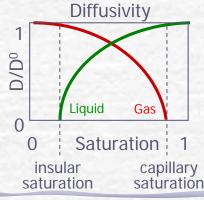
- Missing evolution of a crack network tied to water contact
- Both "intact" & "degraded" cases are not realistic

Conceptual Model

- Micro-cracks develop, increasing solid-liquid surface area
- Bridging of micro-cracks create macro-cracks
- Through-cracks develop over time, leading to convective flow
- Ultimate end state may be permeable matrix – equilibrium release


Current Assumptions and Limitations (DOE)


- Case 1: Waste form is intact for all time
- Case 2: Waste form has evenlyspaced through-cracks at beginning of assessment



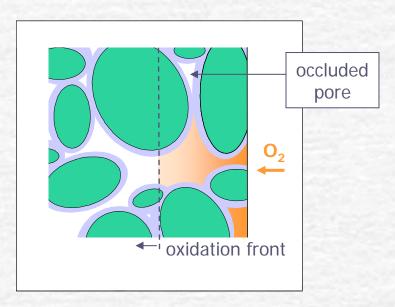
Moisture Transport

Conceptual Model

- Waste form consumes water via hydration reactions
- Moisture exchange w/environment
 - Evaporation/condensation
 - Capillary suction
 - Intermittent wetting (precipitation)
- Water content determines
 - Gaseous degradation processes (oxidation, carbonation)
 - Constituent diffusion pathways

Current Assumptions and Limitations (DOE)

- Waste form remains saturated
 - Gas phase reactions limited to external surfaces


Impact

 Diffusivities are not constant over moisture regime

Oxidation Rates and Extent

	Air	Water	Ratio (A/W)
D ₀₂ [cm ² /s] (1)	0.21	0.000019	1.1E+04
Conc of O ₂ [%] (2)	21	0.00052	4.0.E+04

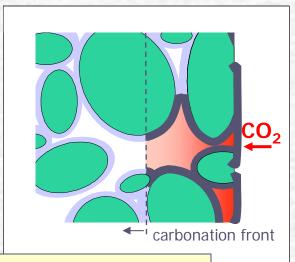
- (1) Wilke and Chang, 1955
- (2) www.swbic.org/education/ env-engr/gastransfer/gastransf.html

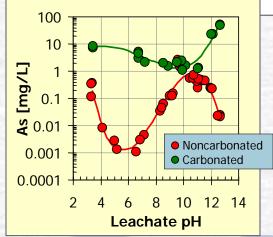
Conceptual Model

- Waste form pores two phase system of gas and liquid
- O₂ transport via gas is dominant.
- Oxidation may lead to change in leaching behavior
 - Increased Tc-99 release

Current Assumptions and Limitations (DOE)

- O₂ transport via liquid only
- Instantaneous reaction with O₂ leading to release


Impact


- Gas phase transport not considered
 - Flux of O_2 (gas) ~108 > liquid phase flux
- Impact to Tc-99 oxidation minimized

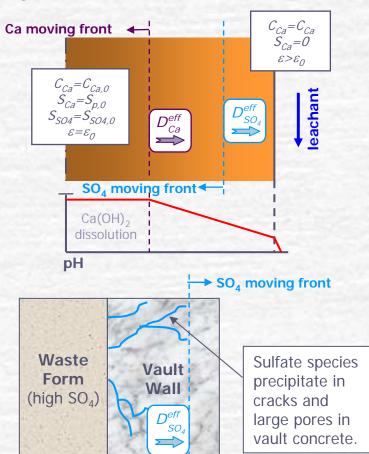
Carbonation

Conceptual Model

- - Gas phase diffusion of CO₂
 - Liquid phase diffusion of HCO₃-
- Pore water pH decreased
 - Alters solubility of constituents.
- Carbonation
 - Increases mineral dissolution
 - Expansive precipitate internal stress (cracking)
 - Pore blocking increases diffusional resistance (decreases oxidation, release rates).

Impact

- Rate calculation does not account for CO₂ transport
- Potential for speciation changes (e.g., As)
- Pore structure changes


Current Assumptions and Limitations (DOE)

- CO₃ transport via liquid only
- Carbonation causes cracking which increases permeability

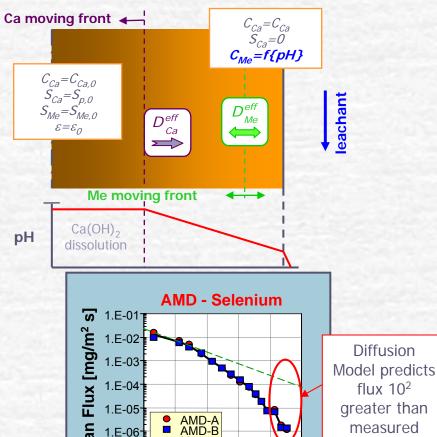
Leaching of Major Constituents

Conceptual Model

- Transport described by moving dissolution fronts
- Dissolution/diffusion of Ca(OH)₂ and CSH control pore water pH
 - pH gradients alter trace species release
- SO₄ leaching from waste into vault attacking concrete physical structure.

Current Assumptions and Limitations (DOE)

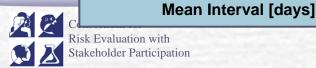
- Simple mass transport models
- Nature of and potential for sulfate attack from waste is not considered


Impact

 Mass transport estimates do not reflect the dynamic chemistry and mineralogy of the waste form

Leaching of Trace Constituents

Conceptual Model


- Release based on coupled chemistry and mass transport.
- Release dependent on:
 - Moisture conditions
 - pH gradients
 - Redox chemistry
 - Boundary layer formation

Current Assumptions and Limitations (DOE)

- Simplified mass transport models
- WACs and projections based on TCLP and ANS-16.1
 - Constant D_{eff} (space and time)
 - Unrealistic release environment

Impact

 Performance assessments may grossly over- or under-predict release

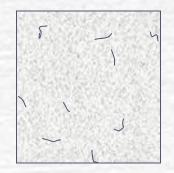
after ~1 year

10 100 1000

Integrated Long-Term Degradation

Chemical degradation and physical stress effects are coupled and integrated.

Physical stress


- Cyclic loading
- Flexural bending
- Drying shrinkage
- Seismic events
- Settlement

Chemical degradation

- Oxidation
- Leaching
- Expansive reactions
 - Carbonation
 - Sulfate attack
 - Rebar corrosion

Microcracks

- Increase porosity
- Increase interaction pore water/surface

Through-cracks

- Preferential flow path
- Diffusive and convective release
- Loss of strength

Spalling

- Loss of cohesiveness
 - Two body problem
- Eventual release from "granular" material

Current Studies on Secondary Waste from ORP

Motivation

Tc-99, I-129 in secondary wastes from vitrification

Objective

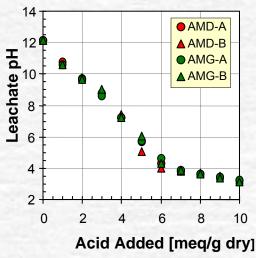
- Leaching assessment of reducing grout for secondary waste treatment.
- Comparison with "ANS16.1-type" testing in synthetic ground water.

Reducing Grout

Ground Steel Slag	43 wt%
Class F Fly Ash	42
• OPC	7
DI Water	7

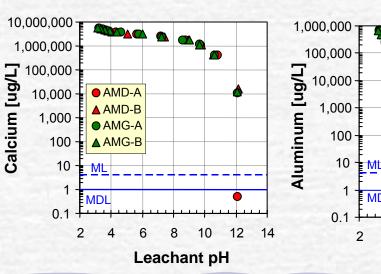
Synthetic Hanford Groundwater

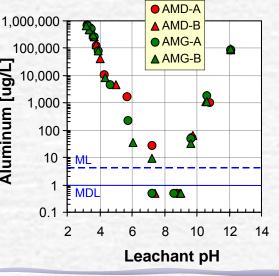
• CaSO ₄	1.20 mmol/L
NaHCO₃	1.04
• $Mg(HCO_3)_2$	0.62
• CaCl ₂	0.34
• KHCO ₃	0.19
• Ca(HCO ₃) ₂	0.18

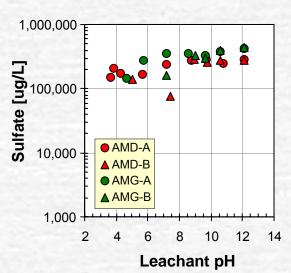

Contaminants in Reducing Grout

XEYES	mg/kg	Added As
Ag	243	AgNO ₃
As(V)	1000	Na ₂ HAsO ₄ •7H ₂ O
Ва	500	Ba(NO ₃) ₂
Cd	1000	Cd(NO ₃) ₂ •4H ₂ O
Cu	1000	Cu(NO ₃) ₂ •2.5H ₂ O
Cs	1000	CsCl
- 1	1214	Nal
Pb	1000	Pb(NO ₃) ₂
Re	971	KReO ₄
Sb	952	Sb ₂ O ₃
Se	751	KSeO ₄
Zn	1000	Zn(NO ₃) ₂

Equilibrium – Major Species

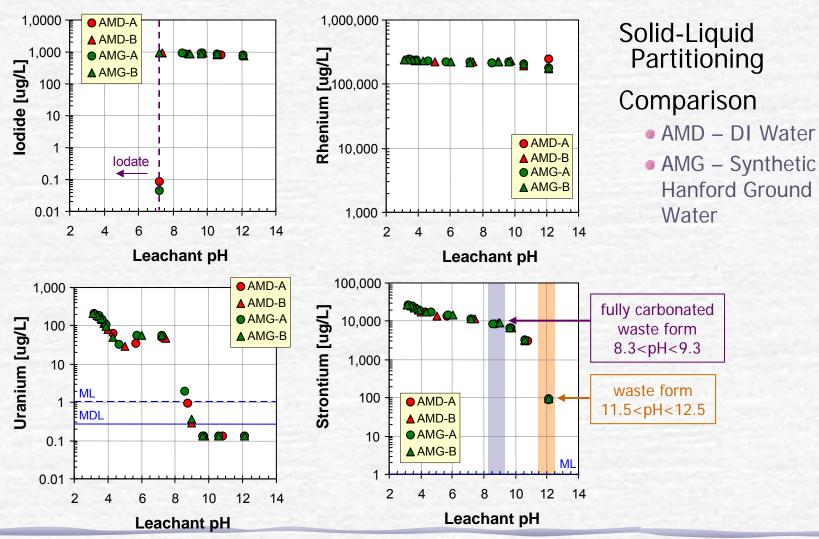


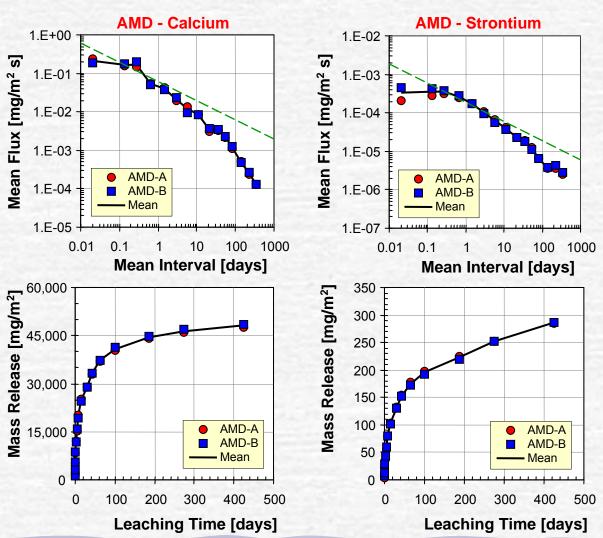

SR002 Test


- Titration curve of material
- Solid-liquid partitioning (solubility & release)
- pH-dependence of species

Comparison

- AMD DI Water
- AMG Synthetic Hanford Ground Water

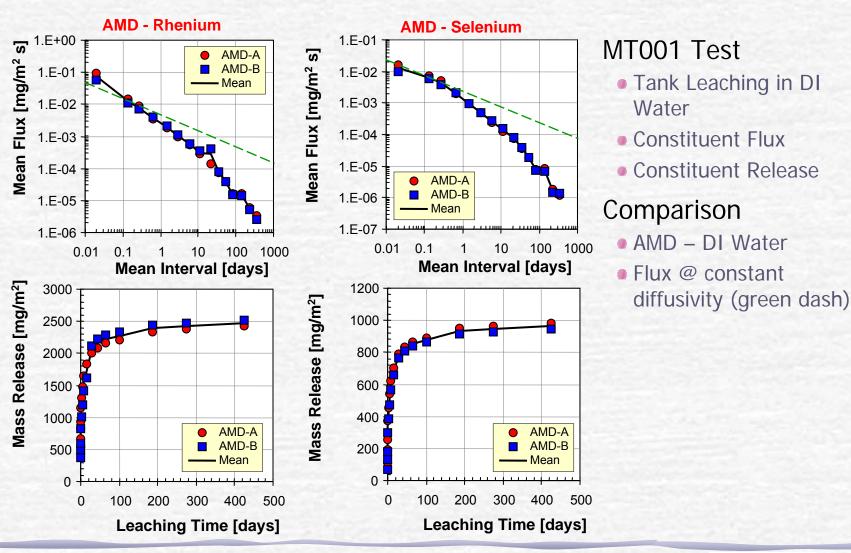



Equilibrium – Trace Species

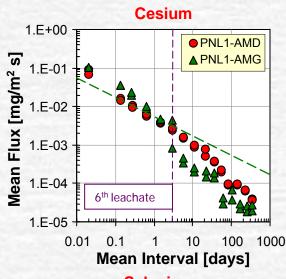
Mass Transport Tests

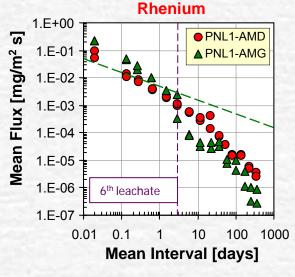
MT001 Test

- Tank Leaching in DI Water
- Constituent Flux
- Constituent Release

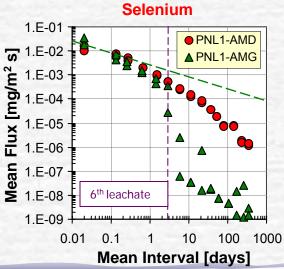

Comparison

- AMD DI Water
- Flux @ constant diffusivity (green dash)


Mass Transport Tests



Synthetic Groundwater



MT001 Test

Comparison

- AMD DI Water
- AMG Synthetic
 Hanford Groundwater

Precipitate on sample AMG-B after 6th leaching interval

Hanford Groundwater

- CaSO₄1.20 mmol/L
- NaHCO₃ 1.04
- Mg(HCO₃)₂ 0.62
- CaCl₂ 0.34
- KHCO₃ 0.19
- Ca(HCO₃)₂ 0.18

Summary of Key Gaps in Current Performance Evaluations

Gas Phase Processes and Transport

- Oxidation
- Carbonation

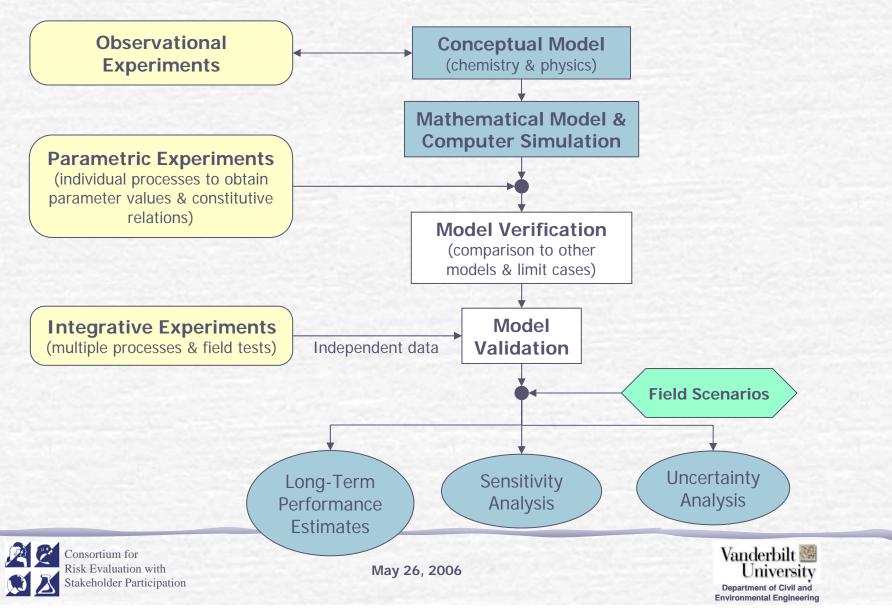
Geochemistry-based Release Modeling

- Pore water chemistry (e.g., pH, redox, composition)
- Boundary layer and gradient effects

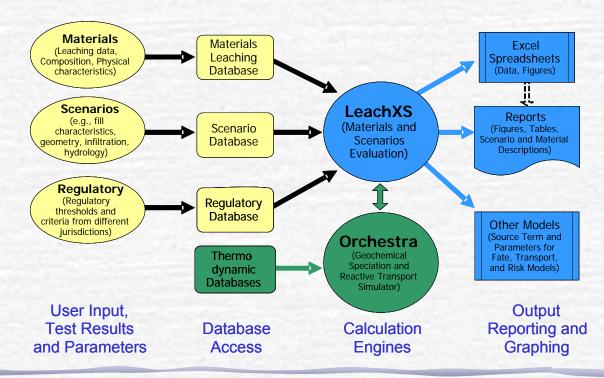
Moisture Transport and Water Content

- Gas phase attack
- Transport under unsaturated conditions (pore connectivity)

"Degradation" and Aging Mechanisms


- Physical deterioration (crack formation at multiple scales)
- Chemical aspects of carbonation
- Oxidation of waste form increasing release of Tc, Se
- Physical changes from Precipitation and Expansive Reactions (e.g., SO₄) at external surfaces (e.g., pore sealing) and in pores

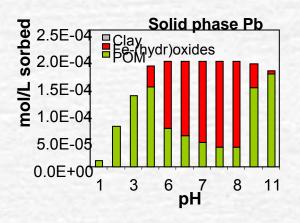
Integration of Models Coupling Degradation Mechanisms Validation of Assumptions/Simulations

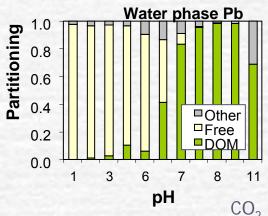

Process- and Mechanism-Based Experimentation & Modeling

LeachXS

Software-based system for evaluating leaching

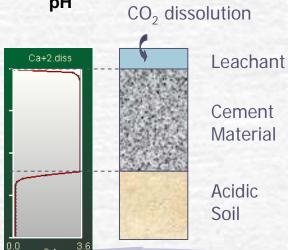
- Incorporates multiple processes and system configurations
- Data management/interpretation
- Geochemical analysis via ORCHESTRA (Meeussen, 2003)
- Database of material leaching information

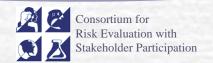




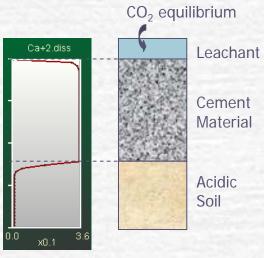
LeachXS Simulations

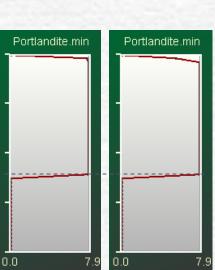
Solid-liquid partitioning

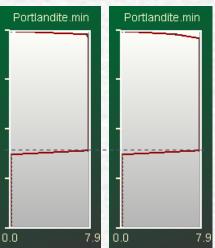

Adorption to DOM, FeOH

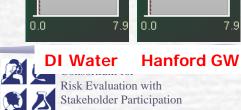


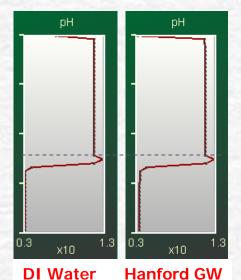
Mass Transfer

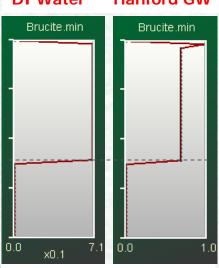

- Diffusion coupled with geochemistry
- Example: Cement Material
 - Leachant (open to air) at upper surface
 - Acidic soil at lower surface

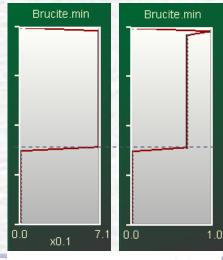


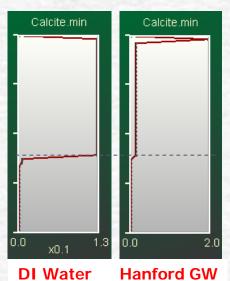


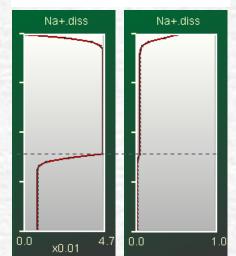



Leachant Simulation - LeachXS









May 26, 2006

Suggested Path Forward

Continue on-going CRESP work with SRNL personnel and others on development of long-term release framework.

- Cement/concrete degradation "State-of-the-Art"
- Developing approaches for short-term (< 1 year) improvement of assessments
- Developing experimental and modeling plan (ca. 3-5 year) on waste form degradation to account for major processes

Experimental studies coupled with model development and validation

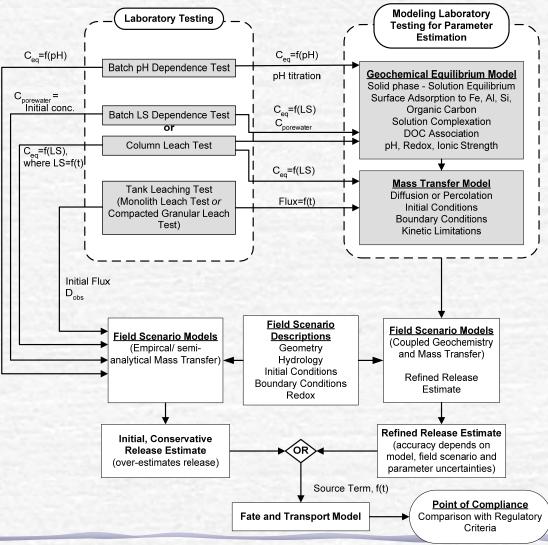
- Formation/effect of boundary layers (e.g., CaCO₃, oxidized layer)
- Moisture transport and status
- Oxidation rates
- Physical changes considering key geochemistry and mass transfer

Conclusions

Significant processes are not included in current DOE performance evaluations that can have major impacts constituent release.

It is important to have a more robust system understanding and model for near-term and longer-term DOE waste management decisions.

CRESP and SRNL, along with others, are currently working together to provide the needed evaluation system components.



Backup slides

Integrated Use of Testing and Simulation

