Conceptual Models and Approaches to Understanding Long Term Performance of Cementitous Waste Forms

Presented by

David S. Kosson, Ph.D., Professor

Vanderbilt University

Consortium for Risk Evaluation with Stakeholder Participation (CRESP)

То

Advisory Committee on Nuclear Waste

Nuclear Regulatory Commission

July 18, 2006

Collaborations

Vanderbilt University

D. Kosson, A. Garrabrants, S. Mahadevan, F. Sanchez, J. Clarke, S. Lopez

Netherlands Energy Research Centre (ECN)

H. van der Sloot, R.Comans, J.C.L. Meeussen, A. van Zomeren, P. Seignette

DHI (Denmark)

O. Hjelmar

Savannah River National Lab

C. Langton, G. Flach

Pacific Northwest National Lab

J. Serne, T. Brouns

Consortium for Risk Evaluation with Stakeholder Participation

Generic Vault Disposal System

Consortium for Risk Evaluation with Stakeholder Participation

Motivation

Need for realistic (as practical) estimates of long-term constituent release for near-surface disposal of cementitious and other nonvitrified waste forms.

Applicability

- Performance Assessments and 3116 Determinations
 - HLW tank closure using grout
 - Disposal of saltstone & similar wastes at SRNL, INL, ORP
 - Primary and secondary waste streams from steam reforming
 - Secondary waste streams from vitrification
- Waste Treatment Acceptance Criteria
- Operational Controls
- Management of future wastes from reprocessing (GNEP)

Primary Constituents of Concern

- Long lived & Mobile: Tc-99, Np-237, Se-79, I-129, C-14, U,
- Mobile: Cs-137, Sr-90, Nitrate, tritium

Consortium for Risk Evaluation with Stakeholder Participation

Broader Questions

What basis should be used to

- Define the appropriate type of waste form for specific wastes?
- Estimate long-term waste form and disposal system performance?

Establish treatment (operational) criteria?

Define monitoring requirements that are pre-emptive to system failure?

Consortium for Risk Evaluation with Stakeholder Participation

Constituent Release by Leaching

Primary Factors

- System Integrity
 - Engineered and Institutional Systems
- Waste Form Performance
 - Physical Integrity
 - Water Contact
 - Moisture Status
 - Oxidation Rates and Extent
 - Constituent Chemistry and Mass Transport

Consortium for Risk Evaluation with Stakeholder Participation

Physical Integrity & Water

Contact

Monolithic Matrix

- Flow-around
- Low interfacial area
- Diffusive release

Stressed Matrix

- Flow-around/through
- Higher interfacial area
- Diffusion-convection

Spalled Matrix

- High permeability
- Very high interfacial area
- Equilibrium-based release

Conceptual Model

- Micro-cracks develop, increasing solid-liquid surface area
- Bridging of micro-cracks create macro-cracks
- Through-cracks develop over time, leading to convective flow
- Ultimate end state may be permeable matrix – equilibrium release
- Need to account for the sequence of physical states and rate of changes
 - Influences chemical reactions and constituent release
- Both "intact" & "degraded" cases are not realistic

Consortium for Risk Evaluation with Stakeholder Participation

Moisture Transport

Conceptual Model

- Waste form consumes water via hydration reactions
- Moisture exchange w/environment
 - Evaporation/condensation
 - Capillary suction
 - Intermittent wetting (precipitation)
- Water content determines
 - Gaseous degradation processes (oxidation, carbonation)
 - Constituent diffusion pathways

Impact

- Diffusivities are not constant over moisture regime
- Fractional saturation
 - Increases the importance of gas phase transport & reactions
 - Decreases rate of liquid phase transport

Consortium for **Risk Evaluation with** Stakeholder Participation

NRC/ACNW - July 18, 2006 (DRAFT)

capillary

saturation

Gas

Vanderbilt 🔛 University Department of Civil and Environmental Engineering

Oxidation Rates and Extent

Air Water Ratio (A/W) D₀₂ [cm²/s] 0.21 0.000019 1.1E+04 Conc of O₂ [mole/L] 8.9E-03 2.6E-04 1.4E+01

(1) Wilke and Chang, 1955

(2) www.swbic.org/education/ env-engr/gastransfer/gastransf.html

Conceptual Model

- Waste form pores two phase system of gas and liquid; depends on moisture content (saturation)
- O₂ transport via gaseous diffusion may be important depending on saturation.
- Oxidation may lead to change in leaching behavior
 - Increased Tc-99 release; other constituents

Impact

- Gas phase transport not considered
 - Flux of O_2 (gas) ~10⁵ > liquid phase flux
- Impact to Tc-99 oxidation minimized

Consortium for Risk Evaluation with Stakeholder Participation

NRC/ACNW - July 18, 2006 (DRAFT) Vanderbilt University

Carbonation

Conceptual Model

- $CO_3^{-2} + Ca^{+2} \rightarrow CaCO_3$ (s)
 - Gas phase diffusion of CO₂
 - Liquid phase diffusion of HCO₃⁻
- Pore water pH decreased
 - Alters solubility of constituents (increase or decrease depending on species).
- Carbonation
 - Expansive precipitate internal stress (cracking)
 - Pore blocking increases diffusional resistance (decreases oxidation, release rates).
 - Extent and pore effects depend on waste form alkalinity and saturation

Impact

- Potential for speciation changes (e.g., As)
- Pore structure changes
- May have either positive (e.g., pore capping) or detrimental (i.e., increased solubility) impacts

Consortium for Risk Evaluation with Stakeholder Participation

NRC/ACNW - July 18, 2006 (DRAFT) Vanderbilt University

Leaching of Major Constituents

Conceptual Model

- Transport described by moving dissolution fronts
- Precipitation/reaction processes near external boundaries may significantly impact release (+ or -)
- Dissolution/diffusion of Ca(OH)₂ and CSH control pore water pH
 - pH gradients alter trace species release
- SO₄ leaching from waste into vault attacking concrete physical structure.
- Source of SO₄ may be waste or external environment

Impact

- Mass transport estimates do not reflect the dynamic chemistry and mineralogy of the waste form.
- Release rates and extents mechanistically different from simplified assumptions, limiting predictability.

Consortium for Risk Evaluation with Stakeholder Participation

NRC/ACNW - July 18, 2006 (DRAFT) Vanderbilt University Department of Civil and Environmental Engineering

Leaching of **Trace Constituents**

Conceptual Model

- Release based on coupled chemistry and mass transport.
- Release dependent on:
 - Moisture conditions 83
 - pH gradients
 - **Redox chemistry**
 - Boundary layer formation

Impact

Performance assessments may grossly over- or under-predict release

Vanderbilt 🚟

Department of Civil and Environmental Engineering

University

Integrated Long-Term Degradation

Chemical degradation and physical stress effects are coupled and integrated.

Physical stress

- Cyclic loading
- Flexural bending
- Drying shrinkage
- Seismic events
- Settlement

Chemical degradation

- Oxidation
- Leaching
- Expansive reactions
 - Carbonation
 - Sulfate attack
 - Rebar corrosion

Microcracks

- Increase porosity
- Increase interaction pore water/surface

Through-cracks

- Preferential flow path
- Diffusive and convective release
- Loss of strength

Spalling

- Loss of cohesiveness
- Two body problem
- Eventual release from "granular" material

Consortium for Risk Evaluation with Stakeholder Participation

NRC/ACNW - July 18, 2006 (DRAFT) Vanderbilt University Department of Civil and Environmental Engineering

Current Studies on Secondary Waste from ORP

Motivation

• Tc-99, I-129 in secondary wastes from vitrification

Objective

- Leaching assessment of reducing grout for secondary waste treatment.
- Comparison with "ANS16.1-type" testing in synthetic ground water.

Deducing Crout	Contaminants in Reducing Grout			
Reducing Grout			mg/kg	Added As
Ground Steel Slag	43 wt%	Ag	243	AgNO ₃
Class F Fly Ash	42	As(V)	1000	Na ₂ HAsO ₄ •7H ₂ O
• OPC	7	Ва	500	Ba(NO ₃) ₂
DI Water	7	Cd	1000	Cd(NO ₃) ₂ •4H ₂ O
Constitution I have found Constructions		Cu	1000	Cu(NO ₃) ₂ •2.5H ₂ O
Synthetic Hanford Groundwater		Cs	1000	CsCl
CaSO ₄	1.20 mmol/L		1214	Nal
NaHCO ₃	1.04	Pb	1000	Pb(NO ₃) ₂
• $Mg(HCO_3)_2$	0.62	Re	971	KReO ₄
CaCl ₂	0.34	Sb	952	Sb ₂ O ₃
KHCO ₃	0.19	Se	751	KSeO₄
Ca(HCO ₃) ₂	0.18	Zn	1000	Zn(NO ₃) ₂

Consortium for Risk Evaluation with Stakeholder Participation

Equilibrium – Trace Species

Department of Civil and **Environmental Engineering**

Mass Transport Tests

MT001 Test

- Tank Leaching in DI Water
- Constituent Flux
- Constituent Release

Comparison

- AMD DI Water
- Flux @ constant diffusivity (green dash)

Synthetic Groundwater

Risk Evaluation with Stakeholder Participation

NRC/ACNW - July 18, 2006 (DRAFT)

Vanderbilt 🔛 University Department of Civil and **Environmental Engineerin**

Process- and Mechanism-Based Experimentation & Modeling

Overarching Framework

(Kosson, van der Sloot, Sanchez & Garrabrants, 2002, <u>Environ. Engr. Sci.</u>, 19, 159-203)

Measure intrinsic leaching characteristics of material (aqueous-solid partitioning (pH and LS); release kinetics)

- Batch extractions & tank leaching (monoliths)
- Constituent fraction readily leached
- Controlling mechanism for release (mineral dissolution and solubility, solid phase adsorption, aqueous phase complexation)
- Release kinetics for mass transfer parameters

Evaluate release in the context of field scenario

- External influencing factors such as carbonation, oxidation
- Hydrology
- Mineralogical changes

Use geochemical speciation and mass transfer models to estimate release for alternative scenarios

- Model complexity to match information needs
- Many scenarios can be evaluated from single data set

Consortium for Risk Evaluation with Stakeholder Participation

Integrated Use of Testing and Simulation

LeachXS

Software-based system for evaluating leaching

- Incorporates multiple processes and system configurations
- Data management/interpretation
- Geochemical analysis via ORCHESTRA (Meeussen, 2003)
- Database of material leaching information

CHROMIUM SPECIATION IN MORTAR AND WATER

Leachant Simulation – Boundary Effects

MODELLING OF 3 LAYER SYSTEM WITH FULL CHEMICAL SPECIATION AND TRANSPORT

Suggested Path Forward

Process of continuous improvement, such that assessments incorporate "state of the art" understanding to extent practical

- Important for current assessments and future nuclear waste management (legacy and future wastes)
- Need to define short-term and long-term needs

Experimental studies coupled with model development and validation

- Formation/effect of boundary layers (e.g., CaCO₃, oxidized layer)
- Moisture transport and status
- Oxidation rates
- Full geochemical model (equilibrium & mass transfer) for key systems
- Physical changes considering key geochemistry and mass transfer

Consortium for Risk Evaluation with Stakeholder Participation

Conclusions

Significant processes are not included in current DOE performance evaluations that can have major impacts constituent release.

It is important to have a more robust system understanding and model for near-term and longerterm DOE waste management decisions.

CRESP and SRNL, along with others, are currently working together to provide the needed evaluation system components.

Consortium for Risk Evaluation with Stakeholder Participation

