Waste Forms & Repositories

Edited by Gregory J. McCarthy Scientific Basis Nuclear Waste Management Volume 1

Geological Sciences

Materials Science & Engineering

WERNER LUTZE · RODNEY C. EWING

RADIOACTIVE

WASTE FORMS FOR

THE FUTURE

NORTH-HOLLAND

Nuclear Engineering & Radiological Sciences

University of Michigan

Nuclear Integration Project Workshop: "The Back-end: Healing the Achilles Heel of the Nuclear Renaissance?" Vanderbilt University March 3, 2008

The Nuclear Fuel Cycle

John Ahearne (1997) Physics Today

Nuclear Wastes in U.S.: 2010

Uranium mine & mill tailings 438 million m³ 3,000 MCi

Depleted uranium (UF6)500,000 metric tonnesHigh-level Waste (defense reprocessing)380,000m³

2,400 MCi

Buried waste (TRU, LLW, hazardous) 6.2 million m³

Spent Nuclear Fuel (commercial) 61, 800 mTHM 39,800 MCi

Contaminated soil79 million m³Contaminated water1,800 to 4,700 million m³Clean-up and disposal cost = 300 billion US dollars

Plutonium Inventories in 2000

in spent nuclear fuel (70-100 tons/year) 1,000 mT in operating reactors 80 mT separated by reprocessing of 'civil" SNF 210 mT (France, 73 MT; UK, 60 MT; Russia, 30 MT; Japan 24 MT)

military inventories: Russia USA others

140 mT 100 mT 15 mT

Estimated World Total 1545 motric tone

Growth of "Civil" Pu-Inventory

Albright and Kramer (2004) Bulletin of the Atomic Scientists

GNEP: Closed Fuel Cycle Strategy

courtesy Department of Energy

Why is the waste form important?

Near-field containment

Long-term behavior can be modeled

• Natural "analogues" can be used to verify extrapolated behavior

• With chemical processing, waste form can be <u>designed</u> to match waste stream

Challenges for Waste Forms

• design

development

synthesis

• evaluate performance

Designing Nuclear Waste Forms

 Radionuclide should guide the selection of the solid phase.

- ✓ If long-term durability is important, let Nature guide.
- Chemical durability is not only a matter of experimental leach rate, but also depends on the corrosion mechanism and the specific geologic setting.

 For crystalline waste forms, radiation-induced transformations may have a profound effect on chemical and mechanical properties. This requires:

- ✓ the study of natural U- and Th-samples of great age;
- ✓ well controlled experiments using ion beam irradiations;
- ✓ accelerated experiments, e.g., ²³⁸Pu and ²⁴⁴Cm

ypical Requirements for Waste Forms

match the waste stream composition

high waste loading

easy processing

chemical flexibility

durability

radiation stability

natural analogues

<u>Science & Technology Plan:</u> <u>Three Tiers</u>

- Immediate Research Needs
 - Long-term Research Plan
- "Integration by Simulation": Properties and Performance

Immediate Research Needs

- short-lived fission products
- long-lived fission products
- complex waste streams
- off-gas radionuclides
- grouts for low level waste streams
- low activity waste streams containing mixed and hazardous chemicals

Long-Term Research Plan

• "Use-inspired" research of specific materials

Cross-cutting fundamental research

BASIC RESEARCH NEEDS FOR GEOSCIENCES FACILITATING 21¹¹ CENTURY ENERGY SYSTEMS

Card in a second s

<u>"Use-inspired" Research of</u> <u>Specific Materials</u>

- structure and chemistry
- phase transitions as a function of temperature and radiation field
- chemical durability over a range of conditions (thermodynamic and kinetic studies)
- corrosion mechanisms and rates
- mechanical properties
- radiation response to different types of radiation
- natural "analogue" studies
- synthesis technologies

Basic Research Needs for Advanced Nuclear Energy Systems

QuickTime¹⁹ and TIFF (L2W) decompres

- Materials under extreme conditions
- Chemistry under extreme conditions
- Separations science
- Advanced actinide fue
- Advanced waste forms
- Predictive modeling and simulation

Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

BASIC RESEARCH NEEDS FOR GEOSCIENCES FACILITATING 21¹¹ CENTURY ENERGY SYSTEMS

Annual Data Section of the Annual Property in the Annual Property in

- Multiphase fluid transport in geologic media
 Chemical migration
 - processes in geologic
- media
- Subsurface

characterization

• Modeling and simulation of geologic systems

<u>"Cross-cutting"</u> Fundamental Research

- novel materials
- interfaces

thermodynamics of complex systems
radiation & radiolysis effects
predictions of long-term performance

Grand Challenges

 f-electron challenge for the chemistry and physics of actinide-bearing materials

- First principles multiscale description of material properties under extreme conditions
- Understanding and designing new molecular systems to gain unprecedented control on chemical selectivity during processing

"Cross-cutting" Fundamental Research

BASIC RESEARCH NEEDS FOR GEOSCIENCES. FACILITATING 21¹⁷ CENTURY ENERGY SYSTEMS

• Microscopic basis

of macroscopic complexity

• Highly reactive subsurface materials and environments

 Thermodynamics of the solute-to-solid continuum

Grand Challenges

 Computational thermodynamics of complex fluids and solids

BASIC RESEARCH NEEDS FOR GEOSCIENCES: FACILITATING 21¹¹ CENTURY ENERGY SYSTEMS

- Integrated characterization, modeling, and monitoring of geologic systems
- Simulation of multi-scale systems for ultra-long times

The Seam Between "Immediate" and "Fundamental" Research Needs

- Novel materials (mesoporous)
- New approaches to the design of materials
- Computational simulation of waste form properties
- Waste forms that are part of the processing technology
- Waste forms that use the natural environment to advantage

"Integration by Simulation" Waste Form Properties & Performance

Computational simulation of:

waste form properties
 waste form behavior in the environment

Full Performance Simulation

Tomas de la Rubia (2007) Basic Research Needs for Materials in Extreme Environments Example

World Total Nuclear Warheads

Actinide Matrices: Mineralogical Solution

simple oxides:	zirconia	ZrO ₂
complex oxides:	<i>pyrochlore</i> <i>murataite</i> <i>zirconolite</i> <i>perovskite</i>	$(Na,Ca,U)_{2}(Nb,Ti,Ta)_{2}O_{6}$ $(Na,Y)_{4}(Zn,Fe)_{3}(Ti,Nb)_{6}O_{18}(F,OH)_{4}$ $CaZrTi_{2}O_{7}$ $CaTiO_{3}$
silicates:	<i>zircon*</i> <i>thorite*</i> <i>garnet*</i> <i>britholite</i> <i>titanite</i>	$ZrSiO_4$ $ThSiO_4$ $(Ca,Mg,Fe^{2+})_3(AI,Fe^{3+},Cr^{3+})_2(SiO_4)_3$ $(Ca,Ce)_5(SiO_4)_3(OH,F)$ $CaTiSiO_5$
phosphates:	<i>monazite*</i> <i>apatite*</i> <i>xenotime*</i>	$LnPO_4$ $Ca_{4-x}Ln_{6+x}(PO_4)_y(O,F)_2$ YPO_4

*durable heavy minerals

CaZrTi₂O₇ (monoclinic) CaPuTi₂O₇ (monoclinic to cubic)

(Ca,Na,U, REE)₂(Nb,Ta,Ti)₂O₆(OH,F) (Ca,Gd,Pu,U,Hf)₂Ti₂O₇

$A_{1-2}B_2O_6(O,OH,F)_{0-1} pH_2O$

Pyrochlore

Pyrochlore to Fluorite

Lian, Wang, Wang, Chen, Boatner and Ewing (2001) Phys. Rev. Lett.

Amorphization: Effect on Dissolution Rate

Radiation-Induced Amorphization in Gadolinium Titanate

(Primary Candidate Phase for Plutonium Immobilization)

From WJ Weber and RC Ewing *Science* **289** (2000) 2051-2052

Radiation-Induced Amorphization (1 MeV Kr⁺): Gd₂(Zr_xTi_{1-x})₂O₇

Wang, Begg, Wang, Ewing, Weber and Kutty (1999) J. Mater. Res.

REE₂Ti₂O₇ Irradiated with 1 MeV Kr⁺

Critical Temperature, T_c, vs. A-site:B-site Radius Ratio

Ewing, Weber and Lian (2004) J. Applied Physics

$T_c vs. Gd_2(Zr_xTi_{1-x})_2O_7$

Ewing, Weber & Lian (2004) J. Applied Physics

Storage Time vs. Amorphization

Equivalent Storage Time (years)

Dose (alpha-decays/g)

Ewing, Weber & Lian (2004) J. Applied Physics

Temperature Dependence of Amorphization for Pu-pyrochlore

Ewing, Weber & Lian (2004) J. Applied Physics

State of the Science

We now have the <u>beginnings</u> of the fundamental understanding of radiationinduced structural transformations required to design nuclear materials, such as waste forms and nuclear fuels, to specific performance requirements, such as chemical durability and radiation "resistance".

We should use this knowledge as a foundation for designing waste forms to specific geologic repository conditions.

