

Impact of Advanced Fuel Cycles on Geological Disposal in a Clay Formation

Jan Marivoet SCK•CEN, Mol, Belgium

NIP Workshop: The Back-end

Nashville, 3-4 March 2008

Content

- 1. Framework
- 2. Considered fuel cycles
- 3. Considered repository system
- 4. Impact on the dimensions of the HLW repository
- Radiological impact of HLW disposal
 a) Doses in case of expected evolution scenario
 - b) Evolution of radiotoxicity and human intrusion doses
- 6. ILW disposal
- 7. Conclusions

Framework

- Nuclear Energy Agency
 - > 3rd Expert Group on P&T related topics
 - Impact of Advanced Nuclear Fuel Cycle Options on Waste Management Policies
 January 2003 - October 2005
- European Commission
 - Red-Impact (Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal) Project
 - ♣March 2004 September 2007

Considered fuel cycles

- NEA study (10 fuel cycles + 3 variants)
 Current industrial technology and extensions

 (4)
 - Partially closed fuel cycles (3 + 1)
 - Fully closed fuel cycles (3 + 2)

Considered fuel cycle scenarios

- Red-Impact project
 > 3 industrial scenarios:
 - A1: the reference scenario: open cycle in PWRs
 - A2: mono recycling of Pu in PWRs
 - ♣A3: multi-recycling of Pu in EFRs
 - ➤ 3 innovative scenarios:
 - B1: fast neutron Gen IV scenario: multi-recycling of Pu and MA in EFRs
 - **♣**B2: PWRs (50 GWd/tHM) + ADS

Fuel cycle scenarios considered in this paper (6 fuel cycles + 1 variant)

- Scenario 1: ref. scen.: open cycle in PWRs (NEA 1a)
- Scenario 2: mono recycling of Pu in PWRs (NEA 1b)
- Scenario 3: multi-recycling of Pu in PWRs (NEA 2a)
- Scenario 4: mono recycling of Pu in PWRs,
 MA + Pu from MOX recycled in ADS (R-I B2)
- Scenario 5: Na-cooled FR (R-I B1)
- Scenario 6: gas-cooled FR (NEA 3c-v1)
- Scenario 6a: gas-cooled FR + removal of Cs and Sr from HLW (NEA 3c-v1_Cs,Sr)

Needed amount of natural uranium

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Fuel cycle scenario	Consumption of natural U			
	(kg/TWhe)			
1	20723			
2	18448			
3	17935			
4	15766			
5	106			
6	86			

HLW: main assumptions

- Activation products not considered in NEA study
 - Iarge uncertainties for advanced fuel cycles
- Reprocessing losses (NEA study)
 0.1% for II and Put
 - ➤ 0.1% for U and Pu
 - > 1% for minor actinides (wet reprocessing)
 - 0.1% for minor actinides (pyro-reprocessing)
 - > 1% of Cs and Sr (scenario 6a)
- **I**-129
 - > 0.1% to 1% of I-129 in vitrified HLW
- HLW matrix in case of advanced fuel cycles
 - Not yet known, assumed to have a performance comparable to that of present glass matrices

Waste packages

- Spent fuels
 - > UOX: 4 assemblies packed in 1 container
 - MOX: 1 assemblies packed in 1 container
- Vitrified HLW
 - I HLW canister packed in 1 (short) container

Geological disposal: considered site (clay layer in NE Belgium)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Gallery configuration (UOX)

Impact of thermal output of HLW on disposal configuration

- Cooling time 50 years
 > after unloading of spent fuel from reactor
- Main temperature limitation
 - temperature at liner / clay interface T < 100 °C</p>

Linear thermal loading < 300-350 W/m

Thermal output and needed length of disposal galleries

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE								
		Fuel cycle scenario						
		1	2	3	4	5	6	6a
SF assemblies	#/TWhe	3.98	0.44	-	-	-	-	
HLW canisters	#/TWhe	-	2.59	3.99	2.50	1.77	1.18	0.70
Cs-waste canisters	#/TWhe							0.22
Thermal output HLW (50 a)	W/TWh e	2110	2031	1997	1051	715	571	12.5
Thermal output Cs-waste (100 a)	W/TWh e							121
Length HLW disposal galleries	m/TWh e	7.03	6.77	6.66	3.50	2.44	2.02	0.75

Radiological impact

- Expected evolution scenario
 Container lifetime: 2000 a
 Main barrier: host clay formation
 Main processes

 Waste matrix degradation
 Solubility limitation (reducing conditions)
 Diffusive transport through buffer and clay layer
 Sorption on clay minerals
 - Very small releases of mobile radionuclides into aquifers and biosphere

Calculated doses via river pathway (scenarios 1 and 5)

Calculated doses via river pathway (all scenarios)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- Duration of releases
 - Cumulative radiotoxicity released into biosphere
 - *integrated over time (up to 1 million years)
- Human intrusion
 - Radiotoxicity in waste

Cumulative radiotoxicity released into biosphere up to 1 million years

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Fuel cycle scenario	Cumulative radiotoxicity (Sv/TWhe)			
1	724			
2	108			
3	15.4			
4	8.58			
5	7.20			
6	6.33			
6a	2.93			

Evolution of radiotoxicity in waste

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Dose to geotechnical worker: intrusion into spent fuel repository (scenario 1)

Required isolation times

Comparator HLW/SF Types	Cigar Lake natural analogue	ICRP 10 mSv intervention level	ICRP 100 mSv intervention level	Radiotoxicity
Scenario 5: HLW	~200,000 a	~40,000 a	~1000 a	~300 a
Scenario 4: HLW from ADS fuel	>1 Ma	~70,000 a	~13,000 a	~300 a
Scenario 3: HLW	> 1 Ma	> 1 Ma	~70,000 a	~24,000 a
Scenario 1: spent UOX fuel	>1 Ma	>1 Ma	~100,000 a	~200,000 a
Scenario 2: spent MOX fuel	>1 Ma	>1 Ma	~200,000 a	~90,000 a

ILW (Red-Impact): number of waste canisters

Fuel cycle		1	2	3	4	5
spent fuel	(assemblies/Twhe)	5.35	0.54	-	-	-
V-HLW	(canisters/Twhe)	-	2.48	2.4	2.66	2.27
ILW-reprocessing	(canisters/Twhe)	_	2.21	4.71	2.93	4.71
ILW- operation	(canisters/Twhe)	-	-	-	0.03	-

ILW: doses (scenario 5 (B1))

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

ILW vs. HLW doses

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

I-waste

Overview of results

Conclusions (1)

- Impact on repository dimensions
 - HLW (high thermal output) AFC: reduction of gallery length with a factor 2 to 3.5 (10 or more in case of Cs and Sr removal)
 - ILW: volume comparable with HLW, negligible thermal output
- Radiotoxicity (human intrusion dose)
 - AFC: strong reduction of radiotoxicity after
 500 years (transmutation of actinides in ADS or FR)

Conclusions (2)

- Impact on dose
 - Limited: dose is due to mobile fission (and activation) products and not to actinides
 - Depends strongly on amount of disposed ¹²⁹I
 - AFC: somewhat higher contribution of solubility limits due to more compact disposal configuration
 - ILW doses: non-negligible (10% of HLW)
 - ♣Activation products: e.g. ¹⁴C in case of FR
 - ♥ Low activation materials needed
 - I-waste: very stable waste matrices (or containers) needed 28

Limitations

- The presented results were obtained for equilibrium scenarios
 - > it may last 100-200 years to reach equilibrium
- How to switch from present fuel cycles to advanced fuel cycles?

transient scenarios

final disposal: expected waste types have been considered

Cm stocks

- How to end advanced fuel cycles?
 - very "hot" spent fuels arise from FR or ADS
 - complete transmutation takes about 150 years

More information

- Paper (clay) will be published in Nuclear Technology (July 2008)
- NEA report (clay, granite, salt, tuff)
 - Impact of Advanced Nuclear Fuel Cycle Options on Waste Management Policies
 - published by NEA/OECD in 2006
- Red-Impact project (clay, granite, salt)
 - Synthesis report
 - ♣ to be published as a FZJ-report (June 2008?)
 - ➤ Web site:

<u>www.red-impact.proj.kth.se</u>