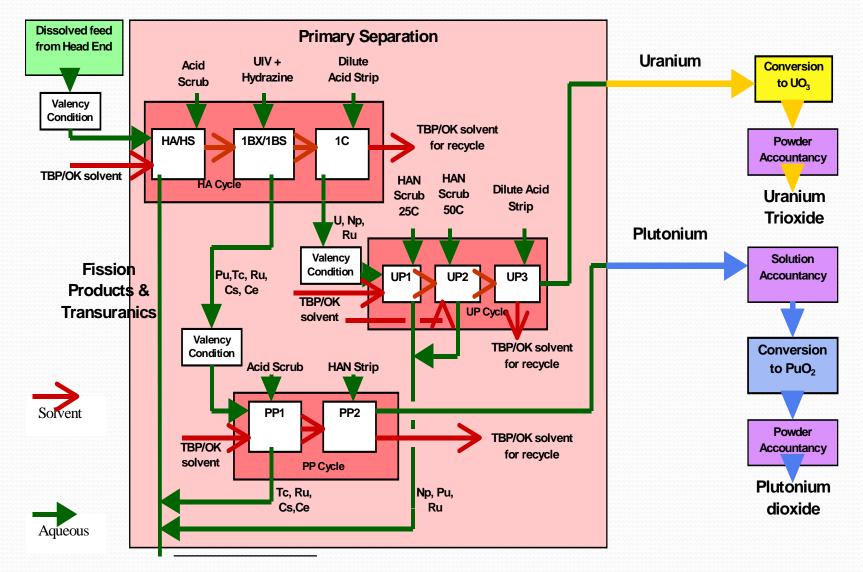

IMPLICATIONS OF ADVANCED NUCLEAR FUEL CYCLES FOR NUCLEAR WASTE MANAGEMENT

> PRESENTED AT THE NUCLEAR INTEGRATION PROJECT WORKSHOP "THE BACK-END: HEALING THE ACHILLES HEEL OF THE NUCLEAR RENAISSANCE"


> > BY R. G. WYMER

VANDERBILT UNIVERSITY MARCH 4, 2008

CONTRIBUTIONS OF SELECTED ACTINIDES AND FISSION PRODUCTS TO SPENT NUCLEAR FUEL DECAY HEAT GENERATION RATE

THORP REPROCESSING FLOWSHEET A MODERN-DAY PROCESS

PROCESS WASTE STREAMS

- GASES AND VOLATILES: 3H, 85Kr, 14C, I, Ru, Xe
- 99Tc
- Cs/Sr
- OTHER FISSION PRODUCTS (INCLUDING LANTHANIDES)
- CLADDING HULLS AND FUEL ELEMENT STRUCTURAL MATERIAL
- SOLVENT CLEANUP WASTES

GASEOUS AND VOLATILE WASTES

• 3H

- 99.9% RELEASED FROM FUEL AND HULLS
- 100% OF RELEASED 3H MAY BE CAPTURED IN OFF GAS SYSTEM

• 85Kr

- 100% RELEASED DURING FUEL DISSOLUTION
- 0.85% MAY BE CAPTURED IN OFF GAS SYSTEM

• 14C

- 100% RELEASED DURING FUEL DISSOLUTION
- 0.99% MAY BE CAPTURED IN OFF GAS
 SYSTEM

GASES AND VOLATILE WASTES (CONTINUED)

- I
 - 98.4% ENTERS OFF GAS AS MOLECULAR IODINE
 - 100% MAY BE CAPTURED IN OFF GAS SYSTEM
- Ru (2.19 KG OF STABLE ISOTOPES FROM ONE MTIHM WITH 33 Gwd BURNUP)
 - ESSENTIALLY COMPLETELY EVOLVED AS RuO4 DURING SPENT FUEL DISSOLUTION
 - MAY BE CAPTURED ON SILICA GEL
- Xe: MAY BE CAPTURED WITH Kr (APPROX. 20 TIMES THE VOLUME OF 85Kr)

FISSION PRODUCTS (INCLUDING LANTHANIDES)

- FISSION PRODUCTS SEPARATED FROM ACTINIDES AND LANTHANIDES
 - ESSENTIALLY COMPLETE SEPARATION
- LANTHANIDES SEPARATED FROM ACTINIDES
 - 99.9% SEPARATION FROM ACTINIDES

CLADDING HULLS AND FUEL ELEMENT STRUCTURAL MATERIALS TREATMENT

FUEL ASSEMBLY HARDWARE MASS, kg

- ZIRCALOY-4 (CLADDING, GUIDE TUBES) 108.4
- STAINLESS STEEL 304 (END FITTINGS) 17.1
- STAINLESS STEEL 302 (PLENUM SPRINGS) 21.9
- INCONEL-718 (GRID SPACERS) 5.9
- NICROBRAZE 50 (BRAZING ALLOY) 1.2
 - HARDWARE TOTAL: <u>154.5 KG</u>
- COMPACTED FOR DISPOSAL (CONTAINS SOME UNDISSOLVED NOBLE METALS - ESTIMATED AMOUNTS)
 - Tc: ~ 15% OF TOTAL
 - Ru: ~ 50% OF TOTAL
 - Pd: ~ 20% OF TOTAL
 - Mo: ~ 40% OF TOTAL
 - Rh: ~ 10% OF TOTAL

WASTE TREATMENTS

- TRITIUM
 - VOLOXIDATION OF SHEARED FUEL SOLIDS RELEASES 3H; 3H CATALYTICALLY CONVERTED TO TRITIATED WATER
- 85Kr
 - ISOLATED BY CRYOGENIC DISTILLATION
- Xe
 - CAPTURED WITH 85Kr (OPTIONAL)
- 14C (EVOLVED FROM DISSOLVER AS CO2)
 - TRAPPED ON MOLECULAR SIEVES AND/OR AS CARBONATE IN ALKALINE SOLUTION
- 129I
 - CAPTURED FROM DISSOLVER OFF GAS ON SILVER SORBENT OR IN ALKALINE SOLUTION
- Ru (SEVERAL STABLE ISOTOPES: 99Ru TO 104Ru)
 - SORPTION AS RuO4 ON SILICA GEL

TECHNETIUM-99

- OCCURS IN SEVERAL PLACES AND AS SEVERAL
 SPECIES IN REPROCESSING FLOWSHEETS
 - DISSOLVER SOLIDS (PRESENT AS FINELY DIVIDED METAL WITH FUEL ELEMENT HULLS AND HARDWARE)
 - SEPARATED WITH URANIUM IN TBP SOLVENT EXTRACTION (SX) STEP
 - PRESENT IN DISSOLVER SOLUTION AS TcO4-
- POTENTIAL SEPARATION FROM DISSOLVER
 SOLUTION BY ION EXCHANGE OR SX
- CAN BE SEPARATED FROM URANIUM IF DESIRED DURING FIRST SX CYCLE

CESIUM AND STRONTIUM MAY BE TREATED BY SEVERAL OPTIONS

- ION EXCHANGE
- SOLVENT EXTRACTION
- PRECIPITATION

FISSION PRODUCTS

REMAIN WITH RAFFINATE FROM FIRST SOLVENT EXTRACTION STEP

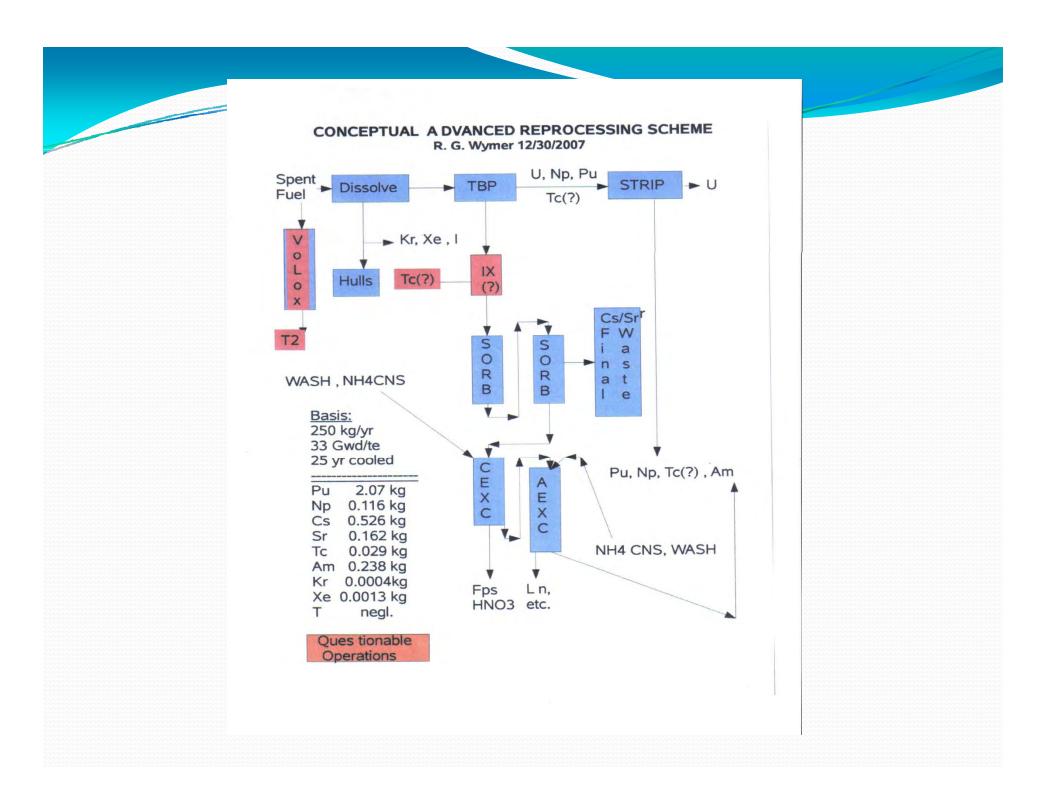
- SEPARATED FROM LANTHANIDES AND ACTINIDES IN ADVANCED FLOWSHEETS
- FISSION PRODUCTS CONVERTED FROM ACIDIC SOLUTION OF NITRATES TO OXIDES PRIOR TO VITRIFICATION

PROJECTED WASTE FORMS

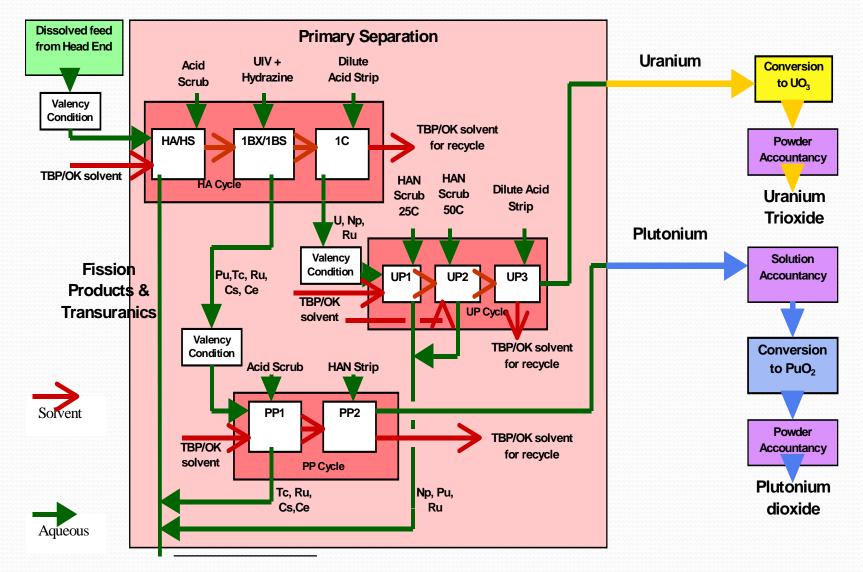
- I: SORBED, POSSIBLY ON SILVER MORDENITE (HYDRATED ALUMINOSILICATE SIEVE) AND GROUTED
- 3H: CATALYTICALLY REACTED TO FORM WATER AND INCORPORATED IN POLYMER-IMPREGNATED CEMENT
- 85Kr: CRYOGENICALY TRAPPED AND CONTAINED IN CYLINDERS
- 14C: RECOVERED ON MOLECULAR SIEVES AND FIXED AS CaCO3 IN GROUT
- Xe: PROBABLY ACCOMPANIES 85Kr (OPTIONAL)

PROJECTED WASTE FORMS (CONTINUED)

- 99Tc: FOLLOWS SEVERAL PATHS TO SEVERAL WASTE FORMS
- Cs/Sr: AN ALUMINOSILICATE
- FUEL CLADDING HULLS AND FUEL ELEMENT STRUCTURAL MATERIAL COMPACTED AS METAL
- OTHER FISSION PRODUCTS (INCLUDING LANTHANIDES) VITRIFIED AS BOROSILICATE GLASS


ADVANCED REPROCESSING SCHEMES OTHER THAN THE UREXS ARE POSSIBLE AND MAY BE DESIRABLE

DESIRABLE ATTRIBUTES OF ADVANCED PROCESSES


- MINIMUM NUMBER OF UNIT OPERATIONS (PROCESS STEPS)
- MINIMIZED WASTE PRODUCTION (RADIOACTIVE AND MIXED WASTES)
- ISOLATION OF 137Cs AND 90Sr (DESIRABLE FOR YUCCA MOUNTAIN REPOSITORY)
- ISOLATION OF ACTINIDES (AT A MINIMUM, SEPARATE Np & Pu ISOTOPES AND 241Am)
- CAPTURE 129I (A REQUIREMENT)
- ENSURES 99Tc REMOVAL MEETS REPOSITORY
 LICENSING REQUIREMENTS

AN EXAMPLE OF A NON-UREX ADVANCED REPROCESSING SCHEME

THORP REPROCESSING FLOWSHEET A MODERN-DAY PROCESS

ADVANCED REPROCESSING SCHEME POTENTIAL ADVANTAGES

- REDUCES PROCESS COMPLEXITY
 - ELIMINATES MULTIPLE SX STEPS
- ELIMINATES SEVERAL WASTE STREAMS
- SEPARATES Cs/Sr DIRECTLY ONTO A POTENTIAL WASTE FORM
- CLEANLY AND EASILY SEPARATES LANTHANIDES FROM ACTINIDES
- USES ESTABLISHED UNIT OPERATIONS, e.g., ION EXCHANGE AND INORGANIC SORBENTS

ADVANCED REPROCESSING SCHEME POTENTIAL DISADVANTAGES

- REQUIRES INCREASED UNDERSTANDING OF THIOCYANATE CHEMISTRY
- RADIATION DAMAGE TO THIOCYANATE ION IN THIS SYSTEM IS UNKNOWN
- EMPLOYS ORGANIC ION EXCHANGERS (IX) SUBJECT TO RADIATION DAMAGE AND REPLACEMENT AFTER MULTIPLE CYCLES AS WASTE
- REQUIRES PERIODIC REPLACEMENT OF Cs/Sr INORGANIC SORBENT COLUMN CONTENTS

CURIES AND MASSES OF RADIONUCLIDES

• BASIS OF VALUES LISTED:

- 33 Gwd/te BURNUP
- 25-YEARS COOLED
- CURIES AND MASSES PRESENT IN ONE METRIC TONNE OF INITIAL HEAVY METAL (MTIHM)
- 3.2% 235U INITIAL URANIUM ENRICHMENT

VALUES IN RED MERIT SPECIAL ATTENTION

CESIUM AND STRONTIUM

- 133Cs: STABLE; 1.132E+03 g
 - 134Cs: 3.390E+01 Ci; 2.600E-02 g
 - 135Cs: 3.500E-01 Ci; 3.010E+02 g
 - 137Cs: 5.842E+04 Ci; 6.710E+02 g
- Sr

Cs

- 86Sr: STABLE; 4.000E-01 g
- 88Sr: STABLE; 2.500E+02 g
- 90Sr: 4.012E+04 Ci; 2.940E+02 g

FISSION PRODUCTS INCLUDING LANTHANIDES

1.981E+05 Ci
3.421E+04 g

ACTINIDE ELEMENTS

• U

- 232U: 2.770E-02 Ci; 1.300E-03 g
- 233U: 4.850E-05 Ci; 5.000E-03 g
- 234U: 1.290E+00 Ci; 2.060E+02 g
- 235U: 1.730E-02 Ci; 7.975E+03 g
- 236U: 2.570E-01 Ci; 3.965E+03 g
- 237U: 9.300E-01 Ci; 1.130E-05 g
- 238U: 3.180E-01 Ci; 9.441E+05 g
- Np
 - 236Np: 3.300E-01 Ci; 4.630E+02 g
 - 237Np: 3.200E-02 Ci; 4.120E-04 g
 - 239Np: 1.700E-07 Ci; 1.700E+01 g

ACTINIDE ELEMENTS (CONTINUED)

• Pu

- 236Pu: 1.400E-03 Ci; 2.690E-06 g
- 238Pu: 2.074E+03 Ci; 1.211E+04 g
- 239Pu: 3.110E+02 Ci; 5.030E+03 g
- 240Pu: 5.280E+02 Ci; 2.316E+03 g
- 241Pu: 3.769E+04 Ci; 3.660E+02 g
- 242Pu: 1.720E+00 Ci; 4.510E+02 g
- 244Pu: 4.220E-07 Ci; 2.400E-02 g

ACTINIDE ELEMENTS (CONTINUED)

• Am

- 241Am: 2.966E+03 Ci; 8.640E+02 g
- 242Am: 6.440E+00 Ci; 7.960E-06 g
- 242Am: 6.470E+00 Ci; 6.700E-01 g
- 243Am: 1.700E+01 Ci; 8.550E+01 g
- Cm
 - 242Cm: 5.330E+00 Ci; 1.600E-03 g
 - 243Cm: 1.150E+01 Ci; 2.200E-01 g
 - 244Cm: 7.430E+02 Ci; 8.500E-01 g
 - 245Cm: 1.500E+02 Ci; 1.500E-03 g
 - 246Cm: 3.100E-03 Ci; 1.000E-01 g

HALF LIVES OF RADIONUCLIDES IMPORTANT IN WASTE MANAGEMENT

RADIONUCLIDE	HALF LIFE, YRS	RADIONUCLIDE	HALF LIFE, YRS
3H	1.23E+01	236U	2.34E+07
14C	5.73E+03	238U	4.47E+09
85Kr	1.08E+01	237Np	2.44E+06
90Sr	2.88E+01	238Pu	8.77E+01
99Tc	2.11E+05	239Pu	2.41E+04
129I	1.07E+07	240Pu	6.56E+03
135Cs	2.30E+06	241Pu	1.44E+01
137Cs	3.01E+01	241Am	4.32E+02
235U	7.04E+08	244Cm	1.81E+01