OVERVIEW OF THE NUCLEAR FUEL CYCLE AND ITS CHEMISTRY

SHORT COURSE : Introduction to Nuclear Chemistry and Fuel Cycle Separations

LAS VEGAS, NV July 19-21, 2011

R. G. WYMER Vanderbilt University

THE NUCLEAR FUEL CYCLE

MAJOR ACTIVITIES OF THE FUEL CYCLE

- MINING, MILLING, CONVERSION TO UF₆
- REACTORS AND FUELS
- SPENT FUEL REPROCESSING
 - AQUEOUS
 - NON-AQUEOUS
 - EQUIPMENT
- WASTE FORMS AND WASTE MANAGEMENT
- MODELING AND SIMULATION

MAJOR ACTIVITIES OF THE FUEL CYCLE (CONTINUED)

- RADIATION-INDUCED DAMAGE
 - ORGANIC PROCESS REAGENTS
 - MATERIALS OF CONSTRUCTION
- NON-PROLIFERATION
- TRANSPORTATION, STORAGE AND DISPOSAL
- QUANTIFYING RISK OF RECYCLE FACILITIES
- ENVIRONMENTAL ASSESSMENT

MINING, MILLING, CONVERSION AND ENRICHMENT

- MINING
 - AVAILABLE ORES
 - OXIDIZED U (U⁺⁶)
 - REDUCED U (U⁺⁴)
 - CONVENTIONAL MINING
 - IN SITU MINING (DIMINISHED ENVIRONMENTAL IMPACT)
- MILLING
 - METHODS
 - PURITY OF PRODUCT

MINING, MILLING, CONVERSION AND ENRICHMENT

(CONTINUED)

- PURIFICATION OF ORE CONCENTRATE
 - SOLVENT EXTRACTION
 - UF₆ DISTILLATION
- CONVERSION TO UF₆
- ENRICHMENT METHODS
 - GASEOUS DIFFUSION (UF₆)
 - GAS CENTRIFUGATION (UF₆)
 - CHEMICAL EXCHANGE
 - AERODYNAMIC (UF₆ + H₂ CARRIER GAS)

REACTORS

• MAJOR POWER REACTOR TYPES

- WATER COOLED AND MODERATED
 - LIGHT WATER: PWR, BWR
 - HEAVY WATER: CANDU
- GAS COOLED
 - **CO**₂
 - He (HTGR)

• LIQUID METAL COOLED (NOT COMMERCIALIZED)

- Na AND ALKALI METAL EUTECTICS
- Pb et alia

 MOLTEN SALT COOLED AND MODERATED (NOT COMMERCIALIZED)

REACTOR FUELS

- WATER-COOLED
 - UO₂ PELLETS IN ZIRCALOY TUBES
- GAS-COOLED
 - UO₂ PELLETS IN ZIRCALOY OR STEEL TUBES
 - U CARBIDES AND OXYCARBIDES IN GRAPHITE
 - PRISMATIC GRAPHITE BLOCKS
 - GRAPHITE BALLS

REACTOR FUELS (CONTINUED)

- LIQUID METAL
 - UO2 PELLETS IN STEEL TUBES
 - U/Zr/PU ALLOY IN STEEL TUBES (UNDER DEVELOPMENT)
 - U CARBIDE (UNDER DEVELOPMENT)
 - U NITRIDE (UNDER DEVELOPMENT)
- MOLTEN SALT
 - UF₄ + ALKALI METAL FLUORIDES (AND ZrF₄)

SPENT FUEL REPROCESSING

• AQUEOUS METHODS

- PUREX (TRI-n-BUTYL PHOSPHATE EXTRACTANT + NITRIC ACID SOL'N. OF SPENT FUEL
- EARLIER PROCESSES
 - REDOX
 - MISC.

NON-AQUEOUS METHODS

- PYROPROCESSES
- VOLATILITY (USING HALIDES, e.g., F AND CI)
- DUPIC-TYPE PROCESSES (LOW DECONTAMINATION)

SOLVENT EXTRACTION EQUIPMENT

- TYPES OF EXTRACTION EQUIPMENT
 - MIXER SETTLERS
 - COLUMNS
 - PULSE
 - PACKED
 - CENTRIFUGAL CONTACTORS

SOLVENT EXTRACTION EQUIPMENT (CONT.)

- BASIC SOLVENT EXTRACTION STEPS
 - EXTRACTION
 - SCRUBBING
 - STRIPPING

SOLVENT EXTRACTION EQUIPMENT (CONT.)

• SX EQUIPMENT REQUIREMENTS

- HIGH CAPACITY
- OPERABLE IN RADIOACTIVE ENVIRONMENT – RADIATION RESISTANT
- REMOTELY OPERABLE
- REMOTELY MAINTAINABLE
- CAPABLE OF HANDLING SOME SOLIDS

OTHER IMPORTANT SEPARATIONS PROCESSES: PRECIPITATION AND CRYSTALLIZATION

- MOST ELEMENTS FORM USEFUL PRECIPITATES
- FIRST Pu SEPARATION USED CARRIER
 PRECIPITATION
- Pu AND U MAY BE PURIFIED BY PEROXIDE PRECIPITATION

OTHER IMPORTANT SEPARATIONS PROCESSES: PRECIPITATION AND CRYSTALLIZATION (CONTINUED)

- PRECIPITATION HAS USES AND LIMITATIONS
 - OFTEN NOT SELECTIVE ENOUGH FOR RADIOCHEMICAL PURITY NEEDS
 - CAN PRODUCE SOLIDS DIFFICULT TO HANDLE (GELATINOUS)
 - OFTEN USED FOR SCAVENGING IMPURITIES
 - Fe(OH)3 IS A WIDELY USEFUL SCAVENGER
 - PHOSPHATES ARE USEFUL SCAVENGERS

OTHER IMPORTANT SEPARATIONS PROCESSES: PRECIPITATION AND CRYSTALLIZATION (CONTINUED)

- CRYSTALLIZATION ENHANCES PURITY
 - CRYSTALS REJECT MANY IMPURITIES FROM THEIR LATTICE
- ACTINIDES IN THE SAME VALENCE STATES MAY CO-PRECIPITATE

MODELING AND SIMULATION (M&S)

- FUEL CYCLE PROCESSES LEND THEMSELVES TO M&S
 - MINING AND MILLING
 - REPROCESSING
 - WASTE FORM DESIGN
 - WASTE STORAGE AND DISPOSAL
 - ACCIDENT SIMULATION
 - TRANSPORTATION
 - FUEL CYCLE LIFE CYCLE STUDIES
- CAREFULLY DESIGNED MODELS CAN GREATLY REDUCE EXPERIMENTATION NEEDED
- M&S CAN BE USED TO HELP DESIGN EXPERIMENTS

EFFECTS OF RADIATION

COMMON IN NUCLEAR INDUSTRY AND MEDICINE

- THREE COMMON TYPES OF RADIATION
 - PHOTON (X-RAY, GAMMA, UV, INFRA-RED)
 - ELECTRON
 - ALPHA PARTICLE
- BIOLOGICAL EFFECTS (HARMFUL AND BENEFICIAL)
- PROCESS REAGENT DAMAGE
 - ORGANIC (IX RESINS, EXTRACTANTS, PRECIPITANTS)
 - INORGANIC (CRYSTAL LATTICE DISRUPTION)
- PROCESS MATERIALS (INSULATION, METALS)

SOME NUCLEAR NON-PROLIFERATION CONSIDERATIONS

- MAJOR PROLIFERATION ACTIVITIES
 - URANIUM ENRICHMENT
 - REPROCESSING FOR Pu RECOVERY
- OVERT WEAPONS TECHNOLOGY DEVELOPMENT
- COVERT WEAPONS TECHNOLOGY
 DEVELOPMENT
- DETECTING CLANDESTINE FUEL CYCLE ACTIVITY

TRANSPORTATION, STORAGE AND DISPOSAL OF NUCLEAR MATERIALS

- NEW FUEL TRANSPORTATION
- USED/SPENT FUEL TRANSPORTATION
- USED/SPENT FUEL STORAGE
 - ON REACTOR SITES
 - IN WATER POOLS
 - IN CONCRETE STORAGE VAULTS
 - CENTRALIZED OFF-SITE STORAGE
- PERMANENT DISPOSAL
 - GEOLOGIC
 - ACTINIDE BURNING + GEOLOGIC DISPOSAL

QUANTIFYING FUEL CYCLE RISKS

- NUCLEAR RISK METHODOLOGY DEVELOPED FOR REACTOR RISKS
- NO COMPREHENSIVE APPLICATION TO THE FUEL CYCLE TO DATE
- PAST ACCIDENTS EMPHASIZE NEED FOR RISK ANALYSIS
 - THREE MILE ISLAND
 - CHERNOBYL
 - FUKUSHIMA DAI-ICHI

ENVIRONMENTAL ASSESSMENT

- A LEGAL REQUIREMENT FOR NUCLEAR FACILTIES
- EXAMINES A RANGE OF SCENARIOS
- RECOMMENDS A PATH FORWARD
- ASSESSEMENT COVERS:
 - LAND USAGE
 - ANIMALS
 - PLANTS
 - HABITATION
 - WATER
 - TOXIC MATERIALS

MIKE GREENBERG